Potassium Iodide have a lot of strong bonds which requires a very high temperature (high energy) to break them and change into a different state of matter.
Since Qp>Kp , the reaction is not at equilibrium.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant shows the extent to which reactants are converted into products.
Now we have to obtain the Qp as follows;
Qp =[CH3OH]/[CO] [H2]^2
Qp = 0.265/(0.265) (0.265)^2
Qp = 14.2
Now we know that Kp = 6.09×10−3, Since Qp>Kp , the reaction is not at equilibrium.
Learn more about equilibrium constant:brainly.com/question/10038290
#SPJ1
570/8.5=67.0 58... you only have to take the natural part, si the answer is 67 students
The balanced equation for the above reaction is as follows;
C + H₂O ---> H₂ + CO
stoichiometry of C to H₂O is 1:1
1 mol of C reacts with 1 mol of H₂O
we need to find which is the limiting reactant
2 mol of C and 3.1 mol of H₂O
therefore C is the limiting reactant and H₂O is in excess.
stoichiometry of C to H₂ is 1:1
then number of H₂ moles formed are equal to C moles reacted
number of H₂ moles formed = 2 mol
H = 1 amu
P = 31 amu
O = 16 amu
Therefore:
H3PO4 = 1 x 3 + 31 + 16 x 4 => 98 u
hope this helps!