Answer: The maximum wavelength of light for which a carbon-chlorine Single bond could be broken by absorbing a single photon is 354 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:
where,
E = energy of the light =
(1kJ=1000J)
N= avogadro's number
h = Planck's constant
c = speed of light
= wavelength of light

Thus the maximum wavelength is 354 nm
159.3 g
mol= mass (g)/ molecular weight (g/mol)
Answer:
0.479 M or mol/L
Explanation:
So Molarity is moles/litres of solution...often written as M=mol/L
So here we are given grams of BaCl2 which we have to convert to moles. To convert to moles of BaCl2 we have to divide 63.2 g BaCl2 by molar mass of BaCl2 which is 208.23 g/mol so you get 63.2/208.23 = 0.3035 moles of BaCl2
Second step is converting the 634mL to litres by simply dividing by 1000 because we know 1 litre has 1000ml so 634/1000 = 0.634L
Now we just plug these guys in our molarity formula M=mol/L
M= 0.3035/0.634 = 0.479 M or mol/L
Answer : The wavelength is 
Solution : Given,
frequency = 29.2 Hz
Formula used :

where,
= frequency
= wavelength
c = speed of light = 
Now put all the given values in this formula, we get the wavelength.

Therefore, the wavelength is 
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.