Answer:
The extension of the wire is 0.362 mm.
Explanation:
Given;
mass of the object, m = 4.0 kg
length of the aluminum wire, L = 2.0 m
diameter of the wire, d = 2.0 mm
radius of the wire, r = d/2 = 1.0 mm = 0.001 m
The area of the wire is given by;
A = πr²
A = π(0.001)² = 3.142 x 10⁻⁶ m²
The downward force of the object on the wire is given by;
F = mg
F = 4 x 9.8 = 39.2 N
The Young's modulus of aluminum is given by;

Where;
Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

Therefore, the extension of the wire is 0.362 mm.
Answer:
v = 2.18m/s
Explanation:
In order to calculate the speed of Betty and her dog you take into account the law of momentum conservation. The total momentum before Betty catches her dog must be equal to the total momentum after.
Then you have:
(1)
M: mass Betty = 40kg
m: mass of the dog = 15kg
v1o: initial speed of Betty = 3.0m/s
v2o: initial speed of the dog = 0 m/s
v: speed of both Betty and her dog = ?
You solve the equation (1) for v:

The speed fo both Betty and her dog is 2.18m/s
Models show how the atoms in a compound are connected.