Answer:
<em>11.06m/s²</em>
Explanation:
According to Newtons second law of motion

Given
Mass m = 17kg
Fm = 208N
theta = 36 degrees
g = 9.8m/s²
a is the acceleration
Substitute
208 - 0.148(17)(9.8)cos 36 = 17a
208 - 24.6568cos36 = 17a
208 - 19.9478 = 17a
188.05 = 17a
a = 188.05/17
a = 11.06m/s²
<em>Hence the the magnitude of the resulting acceleration is 11.06m/s²</em>
Answer: b) pointed toward and parallel to the member.
Explanation:
It is shown in the picture attached
Answer:
6.75m/s
Explanation:
using the second equation of motion, the time is calculated.
and with the formula a= (v - u)/t
where a is acceleration but in this case it's deceleration (and should be negated as you solve it ) .
v is final velocity
u is initial velocity
t is time taken
I think one hour, sorry if i'm wrong
Answer:
The distance is 
Explanation:
From the question we are told that
The distance from the conversation is 
The intensity of the sound at your position is 
The intensity at the sound at the new position is 
Generally the intensity in decibel is is mathematically represented as
![\beta = 10dB log_{10}[\frac{d}{d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20log_%7B10%7D%5B%5Cfrac%7Bd%7D%7Bd_o%7D%20%5D)
The intensity is also mathematically represented as

So
![\beta = 10dB * log_{10}[\frac{P}{A* d_o} ]](https://tex.z-dn.net/?f=%5Cbeta%20%20%3D%20%2010dB%20%2A%20%20log_%7B10%7D%5B%5Cfrac%7BP%7D%7BA%2A%20d_o%7D%20%5D)
=> ![\frac{\beta}{10} = log_{10} [\frac{P}{A (l_o)} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cbeta%7D%7B10%7D%20%20%3D%20%20log_%7B10%7D%20%5B%5Cfrac%7BP%7D%7BA%20%28l_o%29%7D%20%5D)
From the logarithm definition
=> 
=> ![P = A (d_o ) [10^{\frac{\beta }{ 10} } ]](https://tex.z-dn.net/?f=P%20%3D%20%20A%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta%20%7D%7B%2010%7D%20%7D%20%5D)
Here P is the power of the sound wave
and A is the cross-sectional area of the sound wave which is generally in spherical form
Now the power of the sound wave at the first position is mathematically represented as
![P_1 = A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]](https://tex.z-dn.net/?f=P_1%20%3D%20%20A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D)
Now the power of the sound wave at the second position is mathematically represented as
![P_2 = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
Generally power of the wave is constant at both positions so
![A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ] = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=A_1%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%20A_2%20%28d_o%20%29%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![4 \pi r_1 ^2 [10^{\frac{\beta_1 }{ 10} } ] = 4 \pi r_2 ^2 [10^{\frac{\beta_2 }{ 10} } ]](https://tex.z-dn.net/?f=4%20%5Cpi%20r_1%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_1%20%7D%7B%2010%7D%20%7D%20%5D%20%20%3D%204%20%5Cpi%20r_2%20%5E2%20%20%20%5B10%5E%7B%5Cfrac%7B%5Cbeta_2%20%7D%7B%2010%7D%20%7D%20%5D)
![r_2 = \sqrt{r_1 ^2 [\frac{10^{\frac{\beta_1}{10} }}{ 10^{\frac{\beta_2}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%5Csqrt%7Br_1%20%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%5Cbeta_1%7D%7B10%7D%20%7D%7D%7B%2010%5E%7B%5Cfrac%7B%5Cbeta_2%7D%7B10%7D%20%7D%7D%20%5D%7D)
substituting value
![r_2 = \sqrt{ 24^2 [\frac{10^{\frac{ 40}{10} }}{10^{\frac{80}{10} }} ]}](https://tex.z-dn.net/?f=r_2%20%3D%20%20%20%5Csqrt%7B%2024%5E2%20%5B%5Cfrac%7B10%5E%7B%5Cfrac%7B%2040%7D%7B10%7D%20%7D%7D%7B10%5E%7B%5Cfrac%7B80%7D%7B10%7D%20%7D%7D%20%5D%7D)
