1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
3 years ago
6

bA cylinder is submerged in water as illustrated in the diagram. Which of the following statements is true? The pressure at B is

equal to that at C. The pressure at B is greater than at D. The pressure at D is less than at B. The pressure at B is greater than at C.
Physics
2 answers:
Gnom [1K]3 years ago
5 0

Hi There!

Question - bA cylinder is submerged in water as illustrated in the diagram. Which of the following statements is true?

Answer - The pressure at D is less than at B.

Hope This Helps :)

ozzi3 years ago
3 0

Question: A cylinder is submerged in water as illustrated in the diagram. Which of the following statements is true?

Answer: The pressure at D is less than at B.

Explanation: this is because B has less amount of pressure and D has a lot more pressure weighing it down and B has less pressure

question answered by

(jacemorris04)


You might be interested in
1. A truck with a mass of 8, 000 kg is traveling at 26.8 m/s when it hits the brakes. A.)What is the momentum of the truck befor
NikAS [45]

Answer:

1. A.) The moment of the truck before it hits the brakes is 214,400 kg·m/s

B.) The force it takes to stop the truck is approximately 17,290.4 N

Explanation:

1. A.) The given parameters are;

The mass of the truck, m = 8,000 kg

The velocity of the truck when it hits the brakes, u = 26.8 m/s

Momentum = Mass × Velocity

The moment of the truck = The mass of the truck × The velocity of the truck

Therefore;

The moment of the truck before it hits the brakes = 8,000 kg × 26.8 m/s = 214,400 kg·m/s

B.) The amount of momentum lost when the truck comes to a stop = The initial momentum of the truck

The time it takes the truck to come to a complete stop, t = 12.4 s

The deceleration, "a" of the truck is given by the following kinematic equation of motion

v = u - a·t

Where;

v = The final velocity of the truck = 0 m/s

u = The initial velocity = 26.8 m/s

a = the deceleration of the truck

t = The time of deceleration of the truck = 12.4 s

Substituting the known values gives;

0 = 26.8 - a × 12.4

Therefore;

26.8 = a × 12.4

a = 26.8/12.4 ≈ 2.1613

The deceleration (negative acceleration) of the truck, a ≈ 2.1613 m/s²

Force = Mass × Acceleration

The force required to stop the truck = The mass pf the truck × The deceleration (negative acceleration) given to the truck

∴ The force it takes to stop the truck = 8,000 kg × 2.1613 m/s² ≈ 17,290.4 N.

8 0
3 years ago
An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standar
defon

Answer:

Explanation:

Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.

To objective is to find the:

(i) required heat exchanger area.

(ii) flow rate to be maintained in the evaporator.

Given that:

water temperature = 300 K

At a reasonable depth, the water is cold and its temperature = 280 K

The power output W = 2 MW

Efficiency \zeta = 3%

where;

\zeta = \dfrac{W_{out}}{Q_{supplied }}

Q_{supplied } = \dfrac{2}{0.03} \ MW

Q_{supplied } = 66.66 \ MW

However, from the evaporator, the heat transfer Q can be determined by using the formula:

Q = UA(L MTD)

where;

LMTD = \dfrac{\Delta T_1 - \Delta T_2}{In (\dfrac{\Delta T_1}{\Delta T_2} )}

Also;

\Delta T_1 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_1 = 300 -290 \\ \\ \Delta T_1 = 10 \ K

\Delta T_2 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_2 = 292 -290 \\ \\ \Delta T_2 = 2\ K

LMTD = \dfrac{10 -2}{In (\dfrac{10}{2} )}

LMTD = \dfrac{8}{In (5)}

LMTD = 4.97

Thus, the required heat exchanger area A is calculated by using the formula:

Q_H = UA (LMTD)

where;

U = overall heat coefficient given as 1200 W/m².K

66.667 \times 10^6 = 1200 \times A \times 4.97 \\ \\  A= \dfrac{66.667 \times 10^6}{1200 \times 4.97} \\ \\  \mathbf{A = 11178.236 \ m^2}

The mass flow rate:

Q_{H} = mC_p(T_{in} -T_{out} )  \\ \\  66.667 \times 10^6= m \times 4.18 (300 -292) \\ \\ m = \dfrac{  66.667 \times 10^6}{4.18 \times 8} \\ \\  \mathbf{m = 1993630.383 \ kg/s}

3 0
3 years ago
An organ system is best described by which of the following?
earnstyle [38]
A group of cells together
3 0
2 years ago
Read 2 more answers
. If force (F), work (W) and velocity (v) are taken as fundamental quantities.
alex41 [277]

Answer:

∴ [T]=[WF−1V−1]

Hope this answer is right!!

7 0
2 years ago
Read 2 more answers
Describing a Physical Change
babymother [125]

Answer:

physical change is the temporary change or riversible change here the physical properties r only changed

for example when water is cooled its get freezed Nd becomes ice similarly wen ice is heated again then it becomes water so here it's not changed permanently

I hope my ans is comprehensive

plz add me in brainliest Nd plz plz plz follow me I request u

6 0
2 years ago
Other questions:
  • Edgar is walking 0.5 M/S toward the back of a train that is traveling forward at 6.0 M/S west. What is Edgars velocity relative
    10·1 answer
  • Do cars get better gas mileage with clean air filters? Gas mileage for 10 cars with dirty air filters and clean air filters was
    14·1 answer
  • (AKS 1a) In 1996 Eddie Cheever recorded the fastest lap ever at the Indianapolis 500. His car completed one lap (4023 meters) in
    14·1 answer
  • Application of pressure​
    5·1 answer
  • At what temperature is the fahrenheit scale reading equal to twice that of the celsius?
    14·1 answer
  • Name
    12·2 answers
  • Where is most of the energy from incoming waves focused?
    13·1 answer
  • A weather balloon is inflated with 0.80 m3 of helium (He) at ground level (pressure is 1.0 atm). The balloon is released and ris
    6·1 answer
  • A 2.47 kg book is dropped from a height of +2.6 m.
    10·1 answer
  • A constant force of 12 N in the positive x direction acts on a 4.0-kg object as it moves from the origin to the point 6i-8j m. H
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!