Answer:
ef<grhtxdgfkugılohşrgzfxthyjhuk
Explanation:dfbgdhzfgbfxgzbfxd
fadwgfrsdfkyugılhşojipdaftshrthsxxfbzxryfchtgghxfjnx hjnnvbm bn dfkunggvxbvbbfbfxxb
Answer:
at T = 0ºC the change of state is from the solid state to the gaseous state
Explanation:
In this exercise we are asked about the changes of state, from the data we will assume that the material is water.
Water can exist in three solid states, liquid and gas, in a graph of pressure ℗ against temperature (T) there is a point called triple at T = 0.01ºC, below this point the curve has two states at high pressure solid and low pressure gas.
As a result of the previous ones at T = 0ºC the change of state is from the solid state to the gaseous state
The formula for the mass that remains:

m₀ - the initial mass, t - time, T - the half-life

The answer is c. 1.25 g.
Answer:
A. -30 N
Explanation:
not sure but if the box isn't moving then the force opposite of Polly would be equal to the force she's exerting.
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).