The period is the time taken by the wave to complete an oscillation. The frequency of the given sound is 500 Hz.
<h2>
Period:</h2>
It is the time taken by the wave to complete an oscillation. The frequency is inversely proportional to the time:

Where,
- frequency
- period = 0.002 s
Put the value in the equation,

Therefore, the frequency of the given sound is 500 Hz.
Learn more about Period:
brainly.com/question/842349
Answer:

Explanation:
Firstly, when you measure the voltage across the battery, you get the emf,
E = 13.0 V
In order to proceed we have to assume that the voltmeter offers no loading effect, which is a valid assumption since it has a very high resistance.
Secondly, the wires must be uniform. So the resistance per unit length is constant (say z). Now, even though the ammeter has very little resistance it cannot be ignored as it must be of comparable value/magnitude when compared to the wires. This is can seen in the two cases when currents were measured. Following Ohm's law and the resistance of a length of wire being proportional to it's length, we should have gotten half the current when measuring with the 40 m wire with respect to the 20 m wire (
). But this is not the case.
Let the resistance of the ammeter be r
Hence, using Ohm's law we get the following 2 equations:
.......(1)
......(2)
Substituting the value of r from (2) in (1), we have,

which simplifying gives us,
(which is our required solution)
putting the value of z in either (1) or (2) gives us, r = 0.5325 
Answer:
R = 7 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance. In this way, we have the following equation.
V = I*R
where:
V = voltage = 49 [V] (units of volts)
I = current = 7 [amp] (amperes)
R = resistance [ohms]
Now clearing R.
R =V/I
R = 49/7
R = 7 [amp]
Hey there!
They answer is option C music would make it harder to focus on the road.
Hope this helps.