1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
4 years ago
5

A bungee cord can stretch, but it is never compressed. When the distance between the two ends of the cord is less than its unstr

etched length L0, the cord folds and its tension is zero. A particular bungee cord has an unstretched length of L0 = 32 m; when it is stretched to L > L0, the cords tension obeys Hooke’s law with "spring" constant 50 N/m. To test the cords reliability, one end is tied to a high bridge of height 91 m (above the surface of a river) and the other end is tied to a steel ball of mass 93 kg, which is dropped off the bridge. The ball stops in the air a few meters before it hits the water — then the cord pulls it back up. Find the ball’s height above the water’s surface at this lowest point of its trajectory. The acceleration of gravity is 9.8 m/s 2 . For simplicity, neglect the cord’s own weight and inertia as well as any air drag on the ball and the cord. Answer in units of m.
Physics
1 answer:
Ksju [112]4 years ago
3 0

Answer:

Explanation:

Given that

g=9.8m/s²

The spring constant is

k=50N/m

The length of the bungee cord is

Lo=32m

Height of bridge which one end of the bungee is tied is 91m

A steel ball of mass 92kg is attached to the other end of the bungee.

The potential energy(Us) of the steel ball before dropped from the bridge is given as

P.E= mgh

P.E= 92×9.8×91

P.E= 82045.6 J

Us= 82045.6 J

Potential energy)(Uc) of the cord is given as

Uc= ½ke²

Where 'e' is the extension

Then the extension is final height extended by cord minus height of cord

e=hf - hi

e=hf - 32

Uc= ½×50×(hf-32)²

Uc=25(hf-32)²

Using conservation of energy,

Then,

The potential energy of free fall equals the potential energy in string

Uc=Us

25(hf-32)²=82045.6

(hf-32)² = 82045.6/25

(hf-32)²=3281.825

Take square root of both sides

√(hf-32)²=√(3281.825)

hf-32=57.29

hf=57.29+32

hf=89.29m

We neglect the negative sign of the root because the string cannot compressed

You might be interested in
In cats, short hair is dominant and long hair is recessive. If a cat has the genotype of hh, what type of hair will it have?
raketka [301]

Answer:

long hair

Explanation:

long hair = hh

short hair= HH

and medium= Hh

8 0
3 years ago
Khalid has been studying the gravitational attraction between three pairs of objects. The table shows the distance between each
SCORPION-xisa [38]

Answer:

Explanation:

Probably the most famous force of all is gravity. We humans on earth think of gravity as an apple hitting Isaac Newton on the head. Gravity means that stuff falls down. But this is only our experience of gravity. In truth, just as the earth pulls the apple towards it due to a gravitational force, the apple pulls the earth as well. The thing is, the earth is just so massive that it overwhelms all the gravity interactions of every other object on the planet. Every object with mass exerts a gravitational force on every other object. And there is a formula for calculating the strengths of these forces, as depicted in the diagram below:

Diagram of gravitational forces between two spheres

Diagram of gravitational forces between two spheres

Let’s examine this formula a bit more closely.

F refers to the gravitational force, the vector we ultimately want to compute and pass into our applyForce() function.

G is the universal gravitational constant, which in our world equals 6.67428 x 10^-11 meters cubed per kilogram per second squared. This is a pretty important number if your name is Isaac Newton or Albert Einstein. It’s not an important number if you are a ProcessingJS programmer. Again, it’s a constant that we can use to make the forces in our world weaker or stronger. Just making it equal to one and ignoring it isn’t such a terrible choice either.

m_1m  

1

​  

m, start subscript, 1, end subscript and m_2m  

2

​  

m, start subscript, 2, end subscript are the masses of objects 1 and 2. As we saw with Newton’s second law (\vec{F} = M\vec{A}  

F

=M  

A

F, with, vector, on top, equals, M, A, with, vector, on top), mass is also something we could choose to ignore. After all, shapes drawn on the screen don’t actually have a physical mass. However, if we keep these values, we can create more interesting simulations in which “bigger” objects exert a stronger gravitational force than smaller ones.

\hat{r}  

r

^

r, with, hat, on top refers to the unit vector pointing from object 1 to object 2. As we’ll see in a moment, we can compute this direction vector by subtracting the location of one object from the other.

r^2r  

2

r, squared refers to the distance between the two objects squared. Let’s take a moment to think about this a bit more. With everything on the top of the formula—G, m_1m  

1

​  

m, start subscript, 1, end subscript, m_2m  

2

​  

m, start subscript, 2, end subscript—the bigger its value, the stronger the force. Big mass, big force. Big G, big force. Now, when we divide by something, we have the opposite. The strength of the force is inversely proportional to the distance squared. The farther away an object is, the weaker the force; the closer, the stronger.

Hopefully by now the formula makes some sense to us. We’ve looked at a diagram and dissected the individual components of the formula. Now it’s time to figure out how we translate the math into ProcessingJS code. Let’s make the following assumptions.

We have two objects, and:

Each object has a PVector location: location1 and location2.

Each object has a numeric mass: mass1 and mass2.

There is a numeric variable G for the universal gravitational constant.

Given these assumptions, we want to compute a PVector force, the force of gravity. We’ll do it in two parts. First, we’ll compute the direction of the force \hat{r}  

r

^

r, with, hat, on top in the formula above. Second, we’ll calculate the strength of the force according to the masses and distance.

Remember when we figured out how to have an object accelerate towards the mouse? We're going to use the same logic.

4 0
3 years ago
PLEASE ANSWER! A sound Wave with a frequency of 100.0 Hz travels in water with a speed of 1,500 m/s and then travels in air with
Sedaia [141]

Answer:

ok

Explanation:

12345-7543

8 0
3 years ago
A book with a mass of 2 kg sits on top of a book shelf at a height of 3 m. How much potential energy does the book have
Arada [10]

Answer:

Answer is 98 joules

Explanation:

P. E=2*9.8*3=98

S.i unit of potential energy ⚡ is joules

So answer is 98 joules

5 0
3 years ago
A long solenoid has a radius of 4.0 cm and has 800 turns/m. If the current in the solenoid is increasing at the rate of 3.0 A/s,
kolbaska11 [484]

Answer:

Explanation:

Given that,

Radius of solenoid R = 4cm = 0.04m

Turn per length is N/l = 800 turns/m

The rate at which current is increasing di/dt = 3 A/s

Induced electric field?

At r = 2.2cm=0.022m

µo = 4π × 10^-7 Wb/A•m

The magnetic field inside a solenoid is give as

B = µo•N•I

The value of electric field (E) can

only be a function of the distance r from the solenoid’s axis and it give as,

From gauss law

∮E•dA =qenc/εo

We can find the tangential component of the electric field from Faraday’s law

∮E•dl = −dΦB/dt

We choose the path to be a circle of radius r centered on the cylinder axis. Because all the requested radii are inside the solenoid, the flux-area is the entire πr² area within the loop.

E∮dl = −d/dt •(πr²B)

2πrE = −πr²dB/dt

2πrE = −πr² d/dt(µo•N•I)

2πrE = −πr² × µo•N•dI/dt

Divide both sides by 2πr

E =- ½ r•µo•N•dI/dt

Now, substituting the given data

E = -½ × 0.022 × 4π ×10^-7 × 800 × 3

E = —3.32 × 10^-5 V/m

E = —33.2 µV/m

The magnitude of the electric field at a point 2.2 cm from the solenoid axis is 33.2 µV/m

where the negative sign denotes counter-clockwise electric field when looking along the direction of the solenoid’s magnetic field.

3 0
3 years ago
Read 2 more answers
Other questions:
  • The capacitor can withstand a peak voltage of 590 volts. If the voltage source operates at the resonance frequency, what maximum
    13·1 answer
  • Which processes transfer energy from the core to the photosphere?
    9·2 answers
  • How does faster-moving air above an airplane wing affect the pressure on the wing?
    10·1 answer
  • A spherical shell of radius 1.70 m contains a single charged particle with q = 88.0 nC at its center. (a) What is the total elec
    15·1 answer
  • .7 Quiz 1
    14·1 answer
  • When a wave hits a boundary, what determines how much is reflected and refracted?
    14·1 answer
  • How do you get DC current and AC current? from a generator?
    15·1 answer
  • When energy is transferred from one part of a system to another, some of the
    15·2 answers
  • Which nasa spacecraft is studying jupiter and its moons?.
    14·1 answer
  • What happens to an object that is moving at 10 m/s if only balanced forces act on it?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!