<em>Quantities that determine the kinetic energy of a body are its </em><em>mass and velocity </em>
Answer: <em>mass and velocity </em>
Explanation:
The kinetic energy of a body is the energy possessed by an object by virtue of its motion. It is given by the equation

Where m represents mass of the body and v represents its velocity.
Two bodies of equal velocity but different mass the heavier body will have greater kinetic energy. When an object is at rest its velocity is equal to zero. Thus its kinetic energy will be zero. Hence it can be concluded that only moving bodies have kinetic energy.
Stationary objects placed at a height possess potential energy which is the energy by virtue of their position or configuration. The total mechanical energy of a system is the sum of potential and kinetic energy.
Answer is C: Ability to see three-dimensional images of the surfaces of object
Explanation:
To enable the technician see fractures and broken particles in a better resolution as the SEM sees the peaks and valley of the structure.
Neutral - they have mass but no charge
-- There's a force of 240N pushing her backwards.
-- She's maintaining a steady speed (of 2.5 m/s) .
-- In order to maintain a steady speed (no acceleration),
the forces on her must be balanced. So she's maintaining
a steady force of 240N forward.
-- Every time she moves 1 m forward, she does work of
(force) x (distance) = 240 joules.
-- She moves 2.5 meters forward every second.
So she's doing (240 x 2.5) = 600 joules of work every second.
-- 600 joules per second = 600 watts .
The amount of solute is increased, and the conductivity of the solution is increased
Explanation:
The ability of a solution to conduct electricity is conductivity.The more concentrated a solution is the higher the conductivity.This is because the concentration of ions will increase.Increasing solute increases the concentration of a solution thus rising the conductivity.
Learn More
Conductivity of a solution :brainly.com/question/9486572
Keywords : concentration, solution, solute, conductivity
#LearnwithBrainly