Ok so the formula is d=vi(t)+½at² and when you substitute it you should get 172.5meters
Explanation:
Let h is the height of the plane above ground. x is the horizontal distance between the ground and the airport. Let s(t) is the distance between the plane and the airport. So,
...........(1)
Given, h = 4, x = 40 and s(t) = -20 mph
Differentiate equation (1) wrt t


When x = 40, 



So, the speed of the airplane is 241.14 m/s. Hence, this is the required solution.
On the list of choices that you provided, there is no such statement.
It would be Atoms, they’re all made up of these tiny particles
As long as it sits on the shelf, its potential energy
relative to the floor is . . .
Potential energy = (mass) x (gravity) x (height) =
(3 kg) x (9.8 m/s²) x (0.8m) = <u>23.52 joules</u> .
If it falls from the shelf and lands on the floor, then it has exactly that
same amount of energy when it hits the floor, only now the 23.52 joules
has changed to kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
23.52 joules = (1/2) x (3 kg) x (speed)²
Divide each side by 1.5 kg : 23.52 m²/s² = speed²
Take the square root of each side: speed = √(23.52 m²/s²) = <em>4.85 m/s </em> (rounded)