Assuming the driver starts slamming the brakes immediately, the car moves by uniformly decelerated motion, so we can use the following relationship

(1)
where
a is the deleceration
S is the distance covered after a time t

is the velocity at time t

is the initial speed of the car
The accident is 80 m ahead of the car, so the minimum deceleration required to avoid the accident is the value of a such that S=80 m and

(the car should stop exactly at S=80 m to avoid the accident). Using these data, we can solve the equation (1) to find a:

And the negative sign means it is a deceleration.
Answer:
Explanation:
Given
Two masses
and
is released and there is tension T in the string
Suppose a is the acceleration of the system
Therefore from Diagram
For 

------1
for m_2 body

-------2
From above two Equation it is said that Tension is greater than m_1g and less than m_2g

Opposite to the direction of the velocity which led it to its current position.
Explanation:
The direction of momentum when a vertically oscillating block comes to the rest momentarily will be opposite to the direction of the velocity that it has just followed to reach reach its current position.
The direction of change in momentum at the bottom will be upwards and at the top will be downwards.
The change in momentum is mathematically defined as:

where:
mass of the block
final velocity of the block
initial velocity of the block
When the block comes to rest it is due to the result of continuously decreasing velocity.
Answer:
False. The net force is Zero
Explanation:
To answer this question we propose the solution of the problem.
We have a toy where balls come in and out after crashes between them, this toy forms our system, so all the balls are parts of the system, when the balls collide with each other according to Newton's third law force and action and reaction, so it has the same magnitude, but opposite direction, this is each is applied to some of the objects.
In conclusion of the previous one for the system the net force is Zero, all are internal. Therefore, the only thing that happens is a redistribution of speeds according to the conservation of the moment.
Let's review the answer.
False. The net force is Zero
So first of all, you might run out of food, which means that there wont be enough to sustain too many animals/people.
Or, you could simply run out of the space to have any more offspring.
One final one is the introduction of a new predator, which would eat the population, making the growth unpredictable.
Hope this helped!!!! :D