Answer:
T = 4.42 10⁴ N
Explanation:
this is a problem of standing waves, let's start with the open tube, to calculate the wavelength
λ = 4L / n n = 1, 3, 5, ... (2n-1)
How the third resonance is excited
m = 3
L = 192 cm = 1.92 m
λ = 4 1.92 / 3
λ = 2.56 m
As in the resonant processes, the frequency is maintained until you look for the frequency in this tube, with the speed ratio
v = λ f
f = v / λ
f = 343 / 2.56
f = 133.98 Hz
Now he works with the rope, which oscillates in its second mode m = 2 and has a length of L = 37 cm = 0.37 m
The expression for standing waves on a string is
λ = 2L / n
λ = 2 0.37 / 2
λ = 0.37 m
The speed of the wave is
v = λ f
As we have some resonance processes between the string and the tube the frequency is the same
v = 0.37 133.98
v = 49.57 m / s
Let's use the relationship of the speed of the wave with the properties of the string
v = √ T /μ
T = v² μ
T = 49.57² 18
T = 4.42 10⁴ N
Answer:
The dilation of time.
The falling of objects.
The changing of paths of light.
Explanation:
I have explained in the image attached below.
From the explanation, the correct ones are;
The dilation of time.
The falling of objects.
The changing of paths of light.
Answer:
v = 719.2 m / s and a = 83.33 m / s²
Explanation:
This is a rocket propulsion system where the system is made up of the rocket plus the ejected mass, where the final velocity is
v - v₀ =
ln (M₀ / M)
where v₀ is the initial velocity, v_{e} the velocity of the gases with respect to the rocket and M₀ and M the initial and final masses of the rocket
In this case, if fuel burns at 75 kg / s, we can calculate the fuel burned for the 10 s
m_fuel = 75 10
m_fuel = 750 kg
As the rocket initially had a mass of 3000 kg including 1000 kg of fuel, there are still 250 kg, so the mass of the rocket minus the fuel burned is
M = 3000 -750 = 2250 kg
let's calculate
v - 0 = 2500 ln (3000/2250)
v = 719.2 m / s
To calculate the acceleration, let's use the concept of the rocket thrust, which is the force of the gases on it. In the case of the rocket, it is
Push = v_{e} dM / dt
let's calculate
Push = 2500 75
Push = 187500 N
If we use Newton's second law
F = m a
a = F / m
let's calculate
a = 187500/2250
a = 83.33 m / s²