Answer:

Explanation:
Given the parallex of the star is 0.1 sec.
The distance is inversely related with the parallex of the star. Mathematically,

Here, d is the distance to a star which is measured in parsecs, and P is the parallex which is measured in arc seconds.
Now,

And also know that,

Therefore the distance of the star is
away.
Answer:
v = 0.5 [m/s]
Explanation:
In order to determine the speed in such a time interval, we must calculate the slope between the last two positions.
The slope of a line is determined by the following mathematical expression.
P₂ = point 2 = (12,12) = (x₂,y₂)
P₁ = Point 1 = (6,9) = (x₁,y₁)
In this specific case, we must see that in the x-axis we have time, and on the y-axis, we have the space axis.
Now using the slope:

This slope is equal to the speed (velocity)
v = 0.5 [m/s]
This problem provides information about the pressure and temperature ideal gases are studied at. The answer to the questions are that all molecules have the same density, 2.43x10²⁵ mol/m³ and 2.43x10¹⁹ mol/cm³.
<h3>Idela gases</h3>
In science, we can start studying gases with the concept of ideal gas, as they do not collide one to another and are assumed to be perfect spheres with no relevant interactions.
In such a way, one can conclude that the <u>number density of all ideal gasses at SATP is the same</u>, as they are assumed to be perfect spheres with equal volumes per molecule.
Moreover, when calculating the number of molecules per cubic meter, one must use the ideal gas equation as:

And plug in the numbers we are given:

Lastly, we can calculate the molecules per cubic centimeter by performing the following conversion:

Learn more about ideal gases: brainly.com/question/26450101
The answer of this question is (c) is always more
The pump is powered by an electric motor that drives an impeller, or centrifugal pump. The impeller moves water, called drive water, from the well through a narrow orifice, or jet, mounted in the housing in front of the impeller.