Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
Answer:
increase
Explanation:
think of climbing a mountain. the higher you go the harder it is to breathe. its because air pressure is increasing
Answer:
(a) The equivalent spring constant is 598.485 N/m
(b) The work done is 46.926 J
Explanation:
From Hooke's law of elasticity
K (spring constant) = F/e
F is the range of force exerted = 237 - 0 = 237 N
e is the extension of bowstring = 0.396 m
K = F/e = 237/0.396 = 598.485 N/m
Work done = 1/2 Fe = 1/2 × 237 × 0.396 = 46.926 J
Answer:
A magnets always have two poles (north and south), the unmagnetized rod can be identified using properties of the poles of a magnet.
Explanation:
The law of magnetism states that like poles repel, while unlike poles attract. The simple experiment here is to use two rods at a time, keeping one of the poles of the first rod constant, while changing the poles of the other rod.
When the two rods are magnets, attraction and repulsion would be observed between the rods. But for the case of unmagnetized rod and one of the magnetised rod, only attraction is observed between the poles.
<span>coast can have more stable temperatures. Coastal regions tend to be more </span>