Answer:
The elastic potential energy PE=143.47kJ
Explanation:
This problem bothers on the potential energy stored in a material.
Given data
Mass of the bungee jumper
m= 75kg
Height of jump down the cliff h=195m
We know that the elastic potential energy stored is same as the potential energy of the bungee jumper
PE= 1/2kx²= mgh
Assuming g is 9.81m/s²
PE= 75*9.81*195
PE= 143471.25J
PE=143.47kJ
What is potential energy?
Potential energy is the energy possessed by a body by virtue of it position.
Answer:
5.38 m/s
Explanation:
Given (in the x direction):
Δx = 2.45 m
v₀ = v cos 42.5°
a = 0 m/s²
Δx = v₀ t + ½ at²
(2.45 m) = (v cos 42.5°) t + ½ (0 m/s²) t²
2.45 = (v cos 42.5°) t
t = 3.32 / v
Given (in the y direction):
Δy = 0.373 m
v₀ = v sin 42.5°
a = -9.8 m/s²
Δx = v₀ t + ½ at²
(0.373 m) = (v sin 42.5°) t + ½ (-9.81 m/s²) t²
0.373 = (v sin 42.5°) t − 4.905 t²
0.373 = (v sin 42.5°) (3.32 / v) − 4.905 (3.32 / v)²
0.373 = 2.25 − 54.2 / v²
v = 5.38
Graph:
desmos.com/calculator/5n30oxqmuu
Answer:

Explanation:
Newton's law of universal gravitation states that the force experimented by a satellite of mass m orbiting Mars, which has mass
at a distance r will be:

where
is the gravitational constant.
This force is the centripetal force the satellite experiments, so we can write:

Putting all together:

which means:
![r=\sqrt[3]{\frac{GM}{4\pi^2}T^2}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGM%7D%7B4%5Cpi%5E2%7DT%5E2%7D)
Which for our values is:
![r=\sqrt[3]{\frac{(6.67\times10^{-11}Nm^2/kg^2)(6.39\times10^{23} kg)}{4\pi^2}(1.026\times24\times60\times60s)^2}=20395282m=20395.3km](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%5Ctimes10%5E%7B-11%7DNm%5E2%2Fkg%5E2%29%286.39%5Ctimes10%5E%7B23%7D%20kg%29%7D%7B4%5Cpi%5E2%7D%281.026%5Ctimes24%5Ctimes60%5Ctimes60s%29%5E2%7D%3D20395282m%3D20395.3km)
Since this distance is measured from the center of Mars, to have the height above the Martian surface we need to substract the radius of Mars R=3389.5 km
, which leaves us with:

Answer:
the answer would be A and B