Answer:
The vertical distance is ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Explanation:
From the question we are told that
The mass of the cylinder is m
The kinetic frictional force is f
Generally from the work energy theorem

Here E the the energy of the spring which is increasing and this is mathematically represented as

Here k is the spring constant
P is the potential energy of the cylinder which is mathematically represented as

And
is the workdone by friction which is mathematically represented as

So

=> ![\frac{1}{2} * k * d^2 = d[mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%5E2%20%3D%20%20d%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![\frac{1}{2} * k * d = [mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%20%3D%20%20%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
The characteristic of epithelial cells that makes them ideal for providing this type of protection is that the cells are packed tightly together.
Skin, the body's largest organ,is our first and best defense against external aggressors. The many layers work hard to protect us, however when its condition is compromised, its ability to work as an effective barrier is impaired.
We know,
Speed = Frequency * Wavelength
Speed = 3 * 0.1 m/s [hertz = 1/sec.]
So, your final answer is 0.3 m/s
Hope this helps!!
Answer: The period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.
Explanation:
Given: Mass = 5 kg
Spring constant = 6 N/m
Formula used to calculate period is as follows.

where,
T = period
m = mass
k = spring constant
Substitute the values into above formula as follows.

Thus, we can conclude that the period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.