The acceleration of gravity on or near the Earth's surface is 9.8 m/s² downward.
Is that right ? I don't hear any objection, so I'll assume that it is.
That means that during every second that gravity is the only force on an object,
the object either gains 9.8m/s of downward speed, or it loses 9.8m/s of upward
speed. (The same thing.)
If the rock starts out going up at 14.2 m/s, and loses 9.8 m/s of upward speed
every second, it runs out of upward gas in (14.2/9.8) = <em>1.449 seconds</em> (rounded)
At that point, since it has no more upward speed, it can't go any higher. Right ?
(crickets . . .)
Answer: A 100-lb child stands on a scale while riding in an elevator. Then, the scale reading approaches to 100lb, while the elevator slows to stop at the lowest floor
Explanation: To find the correct answer, we need to know more about the apparent weight of a body in a lift.
<h3>What is the apparent weight of a body in a lift?</h3>
- Consider a body of mass m kept on a weighing machine in a lift.
- The readings on the machine is the force exerted by the body on the machine(action), which is equal to the force exerted by the machine on the body(reaction).
- The reaction we get as the weight recorded by the machine, and it is called the apparent weight.
<h3>How to solve the question?</h3>
- Here we have given with the actual weight of the body as 100lbs.
- This 100lb child is standing on the scale or the weighing machine, when it is riding .
- During this condition, the acceleration of the lift is towards downward, and thus, a force of ma .
- There is also<em> mg </em>downwards and a normal reaction in the upward direction.
- when we equate both the upward force and downward force, we get,
i.e. during riding the scale reads a weight less than that of actual weight.
- When the lift goes slow and stops the lowest floor, then the acceleration will be approaches to zero.
Thus, from the above explanation, it is clear that ,when the elevator moves to the lowest floor slowly and stops, then the apparent weight will become the actual weight.
Learn more about the apparent weight of the body in a lift here:
brainly.com/question/28045397
#SPJ4
Answer:
Interface
Explanation:
This is a classic example of Interface technology.
An interface allows different software packages to communicate without re-entering data.
Here in this case also systems are able to communicate with one another without duplicating data entry. For example, practice management software and another for their electronic health record.
Answer:
a) Osmolarity measures the moles of solute per liter of solution.
Explanation:
Osmolarity is defined as the number of moles of solute that contribute to the osmotic pressure, per liter of solution, of solution. That is, the measurement of the solute concentration. The prefix "osmo-" indicates the possible variation of the osmotic pressure in the cells, which will occur when the solution is introduced into the body.
Answer:
The magnitude of the torque is 263.5 N.
Explanation:
Given that,
Applied force = 31 N
Distance from the axis = 8.5 m
She applies her force perpendicularly to a line drawn from the axis of rotation
So, The angle is 90°
We need to calculate the torque
Using formula of torque

Where, F = force
d = distance
Put the value into the formula


Hence, The magnitude of the torque is 263.5 N.