<span><span>m1</span>Δ<span>T1</span>+<span>m2</span>Δ<span>T2</span>=0</span>
<span><span>m1</span><span>(<span>Tf</span>l–l<span>T<span>∘1</span></span>)</span>+<span>m2</span><span>(<span>Tf</span>l–l<span>T<span>∘2</span></span>)</span>=0</span>
<span>50.0g×<span>(<span>Tf</span>l–l25.0 °C)</span>+23.0g×<span>(<span>Tf</span>l–l57.0 °C)</span>=0</span>
<span>50.0<span>Tf</span>−1250 °C+23.0<span>Tf</span> – 1311 °C=0</span>
<span>73.0<span>Tf</span>=2561 °C</span>
<span><span>Tf</span>=<span>2561 °C73.0</span>=<span>35.1 °C</span></span>
Answer:
<u><em></em></u>
- <u><em>Because the x-intercet of the graph represents volume zero, which indicates the minimum possible temperature or absolute zero.</em></u>
Explanation:
Charle's Law for ideal gases states that, at constant pressure, the <em>temperature</em> and the <em>volume</em> of a sample of gas are protortional.

That means that the graph of the relationship between Temperature, in Kelivn, and Volume is a line, which passes through the origin.
When you work with Temperature in Celsius, and the temperature is placed on the x-axis, the line is shifted to the left 273.15ºC.
Meaning that the Volume at 273.15ºC is zero.
You cannot reach such low temperatures in an experiment, and also, volume zero is not real.
Nevertheless, you can draw the line of best fit and extend it until the x-axis (corresponding to a theoretical volume equal to zero), and read the corresponding temperature.
Subject to the experimental errors, and the fact that the real gases are not ideal, the temperature that you read on the x-axis is the minimum possible temperature (<em>absolute zero</em>) as the minimum possible volume is zero.
Answer:
It would have a charge of +2.
Explanation:
A proton has a charge of +1, an elctron has a charge of -1, and a neutron has a charge of 0. Ignore the neurons since they have a charge of 0. Since there are 20 protons and 18 electrons (20-18), the overall charge of the atom is +2.
Answer:
Microliters = 
Explanation:
SI unit of volume is liter.
..............................(1)
1dm=10cm
.................(2)
replacing value of
from equation (1) in equation (2)
...................(3)
but
....................(4)
replacing value of 1 liter from equation (3) in equation (4)

on solving further ,we get



Microliters = 