Nitrogen and oxygen are the most prevalent in the atmosphere.
Separation will be achieved if one component adheres to the stationary phase more than the other component does.
Answer:
1.35 g
Explanation:
Data Given:
mass of Potassium Permagnate (KMnO₄) = 3.34 g
Mass of Oxygen: ?
Solution:
First find the percentage composition of Oxygen in Potassium Permagnate (KMnO₄)
So,
Molar Mass of KMnO₄ = 39 + 55 + 4(16)
Molar Mass of KMnO₄ = 158 g/mol
Calculate the mole percent composition of Oxygen in Potassium Permagnate (KMnO₄).
Mass contributed by Oxygen (O) = 4 (16) = 64 g
Since the percentage of compound is 100
So,
Percent of Oxygen (O) = 64 / 158 x 100
Percent of Oxygen (O) = 40.5 %
It means that for ever gram of Potassium Permagnate (KMnO₄) there is 0.405 g of Oxygen (O) is present.
So,
for the 3.34 grams of Potassium Permagnate (KMnO₄) the mass of Oxygen will be
mass of Oxygen (O) = 0.405 x 3.34 g
mass of Oxygen (O) = 1.35 g
Answer:
The concentration of HA is the same as concentration of H3O+ and A- produced.
Explanation:
The dissociation equation is given below:
HA(aq) + H2O (l) —> H3O+(aq) + A-(aq)
From the reaction above, we can see that the acid is monoprotic acid i.e it has only 1 ionisable hydrogen atom.
Now, from the balanced equation, we can see that the acid produced equal concentration of H3O+ and A-.
This account for the reason why the bars for H3O+ and A- have the same height as the bar for HA.
2 C₁₇H₁₉NO₃ + H₂SO₄ → Product
Moles of H₂SO₄ = M x V(liters) = 0.0116 x 8.91/1000 = 1.033 x 10⁻⁴ mole
moles of morphine = 2 x moles of H₂SO₄ = 2.066 x 10⁻⁴
Mass of morphine = moles x molar mass of morphine = 2.066 x 10⁻⁴ x 285.34
= 0.059 g
percent morphine =

=

= 8.6 %