Answer:
0.5 × 10²³ atoms of iodine
Explanation:
Given data:
Mass of calcium iodide = 12.75 g
Number of atoms of iodine = ?
Solution:
First of all we will calculate the number of moles of calcium iodide.
Number of moles = mass/ molar mass
Number of moles = 12.75 g/ 293.9 g/mol
Number of moles = 0.04 mol
In one mole of calcium iodide there are two moles of iodine.
Thus in 0.04 moles:
0.04 mol × 2 = 0.08 moles of iodine
Now we will use the Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
0.08 moles of iodine × 6.022 × 10²³ atoms / 1 mol
0.5 × 10²³ atoms of iodine.
The number of atoms of each element :
C : 1 atom
H : 3 atoms
Br = 1 atom
<h3>Further explanation</h3>
Given
Bromomethane-CH₃Br
Required
The number of atoms
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of atoms in a compound is generally indicated as a subscript after the atom
C : 1 atom
H : 3 atoms
Br = 1 atom
Total 5 atoms
Total = <span>products + reactants</span>
Answer:
distillation
Explanation:
Actually, distillation is used to separate liquids from nonvolatile solids, as in the separation of alcoholic liquors from fermented materials, or in the separation of two or more liquids having different boiling points, as in the separation of gasoline, kerosene, and lubricating oil from crude oil.