Your Answer Will Be Intensive Property
1 mole of carbon dioxide contains a mass of 44 g, out of which 12 g are carbon.
Hence, in this case the mass of carbon in 8.46 g of CO2:
(12/44) × 8.46 = 2.3073 g
1 mole of water contains 18 g, out of which 2 g is hydrogen;
Therefore, 2.6 g of water contains;
(2/18) × 2.6 = 0.2889 g of hydrogen.
Therefore, with the amount of carbon and hydrogen from the hydrocarbon we can calculate the empirical formula.
We first calculate the number of moles of each,
Carbon = 2.3073/12 = 0.1923 moles
Hydrogen = 0.2889/1 = 0.2889 moles
Then, we calculate the ratio of Carbon to hydrogen by dividing with the smallest number value;
Carbon : Hydrogen
0.1923/0.1923 : 0.2889/0.1923
1 : 1.5
(1 : 1.5) 2
= 2 : 3
Hence, the empirical formula of the hydrocarbon is C2H3
Exothermic processes: Making ice cubes,formation of snow in clouds
Endothermic processe: Melting ice cubes, evaporation of water
Answer:
a) K = [ CO2(g) ]
⇒ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
Explanation:
a) CaCO3(s) ↔ CaO(s) + CO2(g)
⇒ K = [ CO2(g) ]
∴ the [ CaCO3(s) ] does not appear in the denominator of the equilibrium constant, as it is a pure solid substance.
b) H2(g) + F2(g) ↔ 2 HF(g)
⇒ K = [ HF(g) ] ² / [ F2(g) ] * [ H2(g) ]
⇒ Kp = PHF² / PF2 * PH2
for ideal gas:
PV = RTn
⇒ P = n/V RT = [ ] RT
⇒ Kp = K (RT)∧Δn
⇒ the values of K and Kp are not the same.
c) K >> 1, The reaction has a high yield and is said to be shifted to the right. then the rate of the forward reaction is greater than the rate of the reverse reaction at equilibrium.
The recrystallization solvent ought to have a genuinely low breaking point since it makes it simpler for the solvent to vanish out when the arrangement air drys.The breaking point ought to be bring down the softening purpose of the compound.If the breaking point is bigger than the dissolving purpose of the intensify, the crystals will liquefy and turn out as an oil rather than crystals. This would be difficult to examine.