Answer:
C
Step-by-step explanation:
Parallel lines will have the same slope, but different y int
y = -3/2x + 8....slope = -3/2....y int = 8
(I) 3x + 2y = 10
2y = -3x + 10
y = -3/2x + 5....slope = -3/2, y int = 5....this IS parallel
(II) 2x - 3y = 9
-3y = -2x + 9
y = 2/3x - 3...slope = 2/3, y int = -3....is not parallel
(III) 6x + 4y = 28
4y = -6x + 28
y = -3/2x + 7...slope = -3/2, y int = 7....this IS parallel
(IV) 3x - 2y = 8
-2y = -3x + 8
y = 3/2x - 4...slope = 3/2...y int = -4...this is not parallel
solution is : I and III
We know the width of the first picture, is 4
we know the ratio from smaller to larger is 1.5:2
thus

solve for "w".
we know the length of the first picture, 6

solve for "L".
Answer:
Like on a test if you get extra credit.
Step-by-step explanation:
Step-by-step explanation:
Enter a problem...
Algebra Examples
Popular Problems
Algebra
Expand using the Binomial Theorem (3x+2)^4
(3x+2)4(3x+2)4
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an−kbk)(a+b)n=∑k=0nnCk⋅(an-kbk).
4∑k=04!(4−k)!k!⋅(3x)4−k⋅(2)k∑k=044!(4-k)!k!⋅(3x)4-k⋅(2)k
Expand the summation.
4!(4−0)!0!⋅(3x)4−0⋅(2)0+4!(4−1)!1!⋅(3x)4−1⋅(2)+4!(4−2)!2!⋅(3x)4−2⋅(2)2+4!(4−3)!3!⋅(3x)4−3⋅(2)3+4!(4−4)!4!⋅(3x)4−4⋅(2)44!(4-0)!0!⋅(3x)4-0⋅(2)0+4!(4-1)!1!⋅(3x)4-1⋅(2)+4!(4-2)!2!⋅(3x)4-2⋅(2)2+4!(4-3)!3!⋅(3x)4-3⋅(2)3+4!(4-4)!4!⋅(3x)4-4⋅(2)4
Simplify the exponents for each term of the expansion.
1⋅(3x)4⋅(2)0+4
Hope this helps!