Answer:
Step-by-step explanation:
From the given information:
The domain D of integration in polar coordinates can be represented by:
D = {(r,θ)| 0 ≤ r ≤ 6, 0 ≤ θ ≤ 2π) &;
The partial derivates for z = xy can be expressed as:

Thus, the area of the surface is as follows:





![= 2 \pi \times \dfrac{1}{3} \Bigg [ (37)^{3/2} - 1 \Bigg]](https://tex.z-dn.net/?f=%3D%202%20%5Cpi%20%5Ctimes%20%5Cdfrac%7B1%7D%7B3%7D%20%20%5CBigg%20%5B%20%2837%29%5E%7B3%2F2%7D%20-%201%20%5CBigg%5D)
![= \dfrac{2 \pi}{3} \Bigg [37 \sqrt{37} -1 \Bigg ]](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B2%20%5Cpi%7D%7B3%7D%20%5CBigg%20%5B37%20%5Csqrt%7B37%7D%20-1%20%5CBigg%20%5D)
1) 6/14 divide by 2 = 3/7
2) 9/12 divide by 3 = 3/4
3) 15/25 divide by 5 = 3/5
Actually, no they cannot. The midpoint is the single point at the very center of the line segment. Since no segment can have multiple centers, they cannot have more than a single midpoint. Sorry :3
Hope this helped!! :D
Answer:
The mean is 9.65 ohms and the standard deviation is 0.2742 ohms.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
10% of all resistors having a resistance exceeding 10.634 ohms
This means that when X = 10.634, Z has a pvalue of 1-0.1 = 0.9. So when X = 10.634, Z = 1.28.




5% having a resistance smaller than 9.7565 ohms.
This means that when X = 9.7565, Z has a pvalue of 0.05. So when X = 9.7565, Z = -1.96.




We also have that:

So





The mean is

The mean is 9.65 ohms and the standard deviation is 0.2742 ohms.