Answer:
C. Lose three electrons to have a full outer shell
Explanation:
Al is in Group 13 of the Periodic Table, so it has three valence electrons.
It must either lose three electrons or gain five to achieve a stable octet.
It is easier to lose three electrons than it is to gain five, so Al loses three electrons.
D. is wrong, for the same reason.
A. is wrong. If Al lost three electrons, it would be breaking into a stable inner shell.
C. is wrong. Al is a metal, so it will lose electrons in a reaction.
I’d say most likely air, oxygen, or carbon dioxide
Answer:
ΔH rxn = -1010 kJ/molC₂H₂
Explanation:
To obtain the enthalpy change for a reaction from bond energies what we do is to make an inventory of the bonds broken and formed for the balanced chemical reaction:
C₂H₂ + 5/2O₂ ⇒ 2CO₂ + H₂O
Bond Broken Bonds Formed
2 C-H + 1 C≡C + 5/2 O=O 4C=O + 2 H-O
Enthalpy bonds broken:
2 mol (456 kJ/mol)+ 1 mol (962 kJ/mol) + 5/2 mol (499 kJ/mol) = 3121.5 kJ
Enthalpy bond formed:
4 mol (802 kJ/mol) + 2 mol (462 kJ/mol) = 4132.0 kJ
ΔH rxn = H broken - H formed = 3121.5 kJ - 4132.0 kJ = - 1010 kJ (per mol C₂H₂ )
I will list them from alkaline with the lowest boiling point and alkaline with the highest.
1. C2H6
2. C9H20
3. C11H24
4. C16H34
5. C20H42
6. C32H66
7. C150H302
I have taken a quiz similar to this before and can assure you this is correct and is primarily because of the number of Carbons and Hydrogens within this. More Carbons and Hydrogens causes Boiling Points to increase because of stronger bonds.