Distillation; either simple or fractional macroscale depending on how far apart the boiling points are.
Answer: pH = 2,897 , basic![[H+][OH-] = 10^{-14} ==> [H+] = \frac{10^{-14}}{7,89*10^{-12} } =\frac{1}{789} \\pH= -lg([H+]) = 2,897 \\pH basic](https://tex.z-dn.net/?f=%5BH%2B%5D%5BOH-%5D%20%3D%2010%5E%7B-14%7D%20%3D%3D%3E%20%5BH%2B%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B7%2C89%2A10%5E%7B-12%7D%20%7D%20%3D%5Cfrac%7B1%7D%7B789%7D%20%5C%5CpH%3D%20-lg%28%5BH%2B%5D%29%20%3D%202%2C897%20%5C%5CpH%3C7%20%3D%3D%3E%20basic)
Explanation:
Using the exponential decay model; we calculate "k"
We know that "A" is half of A0
A = A0 e^(k× 5050)
A/A0 = e^(5050k)
0.5 = e^(5055k)
In (0.5) = 5055k
-0.69315 = 5055k
k = -0.0001371
To calculate how long it will take to decay to 86% of the original mass
0.86 = e^(-0.0001371t)
In (0.86) = -0.0001371t
-0.150823 = -0.0001371 t
t = 1100 hours