Answer: 1. The resting membrane potential would become less negative (more positive).
Explanation:
Resting membrane potential is a voltage carried by a resting (non-signaling) neuron, or called as resting potential, across its membrane. The resting potential is determined by ion concentration gradients across the membrane, and the permeability of the membrane to each ion form.
In a resting brain, there are gradients of concentration across the Na+ and K+ membranes. Forces shift their gradients down through channels, resulting in a separation of charges that provides the potential for rest. The membrane is much more permeable to K+ than to Na+, so the resting potential is similar to K+'s potential for equilibrium.
Hence, the correct option is 1. The resting membrane potential would become less negative (more positive).
Answer:
C. Oxygen concentration decreases as altitude increases
Explanation:
Higher altitudes have lower levels of oxygen and decreased air pressure.
If siRNA against a starch-branching enzyme was transmitted to humans, then it may affect the expression of glycogen-branching enzymes. RNAi inhibits gene expression.
Glycogen-branching enzymes are similar to starch-branching enzymes because glycogen bonds are similar to those observed between amylopectin.
The RNA interference (RNAi) pathway is an evolutionarily conserved mechanism used in molecular biology laboratories to inhibit the expression of target genes.
In the RNAi technique, a regulatory non-coding RNA called small interfering RNA (siRNA) that exhibits sequence complementary to the target gene sequence is used to inhibit and/or block the translation of the target mRNA (in this case, starch/glycogen-branching mRNA coding enzyme).
Learn more in:
brainly.com/question/11484135