We need to directly measure the spectral type in order to determine the surface temperature of a star.
<h3>How do you find the properties of a star?</h3>
Astronomers can determine the temperature of a star by looking at its color and spectrum. The apparent brightness of a star describes how luminous it looks to us. The brightness of a star tells us how bright it really is. The luminance can be determined using both the perceived brightness and the distance.
A star's luminosity, or the total amount of energy it emits each second, is determined by two factors: The stellar photosphere's "Effective Temperature," T. the star's total surface area, which is influenced by its radius, R.
Because it controls how much fuel a star has and how quickly it burns it, a star's mass is its most fundamental characteristic. The majority of a star's life is spent burning hydrogen into helium in its core, which generates energy. The star needs to achieve a balance between gravity and outward pressure in order to continue to be "alive."
To know more about stellar property visit:
brainly.com/question/14950677
#SPJ4
Aerobie. Frisbee. Discus. Javelin. I suppose an American football to some extent.
<span>Pull! Clay pigeons. Arrows. Wingsuit. Kites. Hang gliders. Sails. sailboat keels/dagger boards. Water skis. Ski jumping skis. Boomerang. </span>
<span>I'm excluding spheres and parachutes as bluff bodies even though aerodynamics often plays a big part in their motion.</span>
Answer:
A horse is running at 12m/s accelerated to 38m/s in 10 seconds. What is the horses acceleration.
2.6m/s^2
Just do energy spent divided by time to get your answer. With this we can say a human might be able to!
Answer:
-2.5 is the answer to your question