1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
5

As the shuttle bus comes to a sudden stop to avoid hitting a dog, it accelerates uniformly at -4.1 m/s^2 as it slows from 9.0 m/

s to 0.0 m/s. Find the time interval of acceleration for the bus.
Physics
1 answer:
zhuklara [117]3 years ago
3 0

Acceleration  =  (change in speed) / (time for the change)

      - 4.1 m/s²  =  (-9 m/s)  /  (time for the change)

Time for the change  =  (-9 m/s) / (-4.1 m/s²)  =   2.2 seconds
You might be interested in
After an eye examination, you put some eyedrops on your sensitive eyes. The cornea (the front part of the eye) has an index of r
mina [271]

Answer:

t = 103.45 n m

Explanation:

given,

refractive index of cornea = 1.38

refractive index of eye drop = 1.45

wavelength of refractive index = 600 nm

refractive index of eye drop is greater than refractive index of cornea and the air.

Formula used in this case

for constructive interference

2 n t = (m + \dfrac{1}{2})\lambda

At m = 0 for the minimum thickness, so

2\times 1.45 \times t = (0 + 0.5)\times 600

2.9 \times t =300

t =\dfrac{300}{2.9}

t = 103.45 n m

the minimum thickness of the film of eyedrops t = 103.45 n m

6 0
3 years ago
A 2.5 g bullet traveling at 350 m/s hits a tree and slows uniformly to a stop while penetrating a distance of 12 cm into the tre
Cloud [144]

Answer: Work done = 153.125Joules, Work done = 0.003Nm

Explanation:

Kinetic energy of a body is the energy possessed by a body by virtue of its motion.

Mathematically,

K.E = 1/2MV²

Where;

M = mass of the body = 2.5g = 0.0025kg

V = velocity of the body = 350m/s

Substituting this values in the formula, we have;

K.E = 1/2× 0.0025×350²

K.E = 153.125Joules

Work done is the force applied to body to cause it to move through a distance.

Work = Force × distance

Force = ma = 0.0025 × 10

Force = 0.025N

Distance = 12cm = 0.12m

Work = 0.025×0.12

Work = 0.003Nm

work done by the tree in stopping the bullet is 0.003N

4 0
3 years ago
Read 2 more answers
A coil with an inductance of 2.3 H and a resistance of 14 Ω is suddenly connected to an ideal battery with ε = 100 V. At 0.13 s
klemol [59]

Given Information:

Resistance = R = 14 Ω

Inductance = L = 2.3 H

voltage = V = 100 V

time = t = 0.13 s

Required Information:

(a) energy is being stored in the magnetic field

(b) thermal energy is appearing in the resistance

(c) energy is being delivered by the battery?

Answer:

(a) energy is being stored in the magnetic field ≈ 219 watts

(b) thermal energy is appearing in the resistance ≈ 267 watts

(c) energy is being delivered by the battery ≈ 481 watts

Explanation:

The energy stored in the inductor is given by

U = \frac{1}{2} Li^{2}

The rate at which the energy is being stored in the inductor is given by

\frac{dU}{dt} = Li\frac{di}{dt} \: \: \: \: eq. 1

The current through the RL circuit is given by

i = \frac{V}{R} (1-e^{-\frac{t}{ \tau} })

Where τ is the the time constant and is given by

\tau = \frac{L}{R}\\ \tau = \frac{2.3}{14}\\ \tau = 0.16

i = \frac{110}{14} (1-e^{-\frac{t}{ 0.16} })\\i = 7.86(1-e^{-6.25t})\\\frac{di}{dt} = 49.125e^{-6.25t}

Therefore, eq. 1 becomes

\frac{dU}{dt} = (2.3)(7.86(1-e^{-6.25t}))(49.125e^{-6.25t})

At t = 0.13 seconds

\frac{dU}{dt} = (2.3) (4.37) (21.8)\\\frac{dU}{dt} = 219.11 \: watts

(b) thermal energy is appearing in the resistance

The thermal energy is given by

P = i^{2}R\\P = (7.86(1-e^{-6.25t}))^{2} \cdot 14\\P = (4.37)^{2}\cdot 14\\P = 267.35 \: watts

(c) energy is being delivered by the battery?

The energy delivered by battery is

P = Vi\\P = 110\cdot 4.37\\P = 481 \: watts

4 0
3 years ago
A 750-kg automobile is moving at 16.8 m/s at a height of 5.00 m above the bottom of a hill when it runs out of gasoline. The car
anygoal [31]

Answer:h=19.4 m

Explanation:

Given

mass of automobile m=750\ kg

Initial height of automobile h_o=5\ m

Velocity at this instant v=16.8\ m/s

If the car stops somewhere at a height h

Thus conserving total energy we get

K_i+U_i=K_f+U_f

\frac{1}{2}mv^2+mgh_o=\frac{1}{2}m(0)^2+mgh

\frac{v^2}{2g}+h_o=h

h=5+\frac{16.8^}{2\times 9.8}

h=5+14.4

h=19.4\ m

6 0
3 years ago
On a certain planet, which is perfectly spherically symmetric, the free-fall acceleration has magnitude g = go at the north pole
ohaa [14]
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:
F=F_g-F_{cf}=mg'-mw^2r'cos(\alpha)\\ ma=mg'-mw^2r'cos(\alpha)\\ a=g'-w^2rcos^2(\alpha)\\
Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation. \alpha is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.
g(90)=g_0;\ g_0= g'-w^2rcos^2(90)\\
g_0=g'\\
g(0)=ag_0;\ ag_0=g_0-w^2rcos^2(0)\\
ag_0=g_0-w^2r\\
w^2r=g_0(a-1)

Our final equation is:
g=g_0-g_0(a-1)cos^2(\alpha)
Colatitude is:
\alpha_c=90^\circ-\alpha
The answer is:
g=g_0-g_0(a-1)cos^2(90-9)=g_0-g_0(a-1)sin^2(9)

5 0
3 years ago
Other questions:
  • If an item as a density of.63 g/mL, when placed in water the item will
    8·1 answer
  • Explain why an iron nail that is stuck to a magnet can pick up a paperclip
    10·2 answers
  • A block (mass 9.0 kg) is released from rest on a frictionless slope angled at 37° to the horizontal. Draw a diagram with labelle
    6·1 answer
  • A proton beam in an accelerator carries a current of 130 μa. if the beam is incident on a target, how many protons strike the ta
    13·1 answer
  • A transformer connected to a 110–(V) (rms) ac line is to supply 10.0 (V) (rms) to a portable electronic device. The load resista
    10·1 answer
  • Mathphys please notice me
    9·2 answers
  • When the mass of the cylinder increased by a factor of 3, from 1.0 kg to 3.0 kg, what happened to the cylinder’s gravitational p
    12·2 answers
  • Lol gn sleep well:))
    8·1 answer
  • Pls ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤​
    11·1 answer
  • The change in momentum that occurs when a 1. 0 kg ball traveling at 4. 0 m/s strikes a wall and bounces back at 2. 0 m/s is.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!