Answer:
S=48.29 m
Explanation:
Given that the height of the hill h = 2.9 m
Coefficient of kinetic friction between his sled and the snow μ = 0.08
Let u be the speed of the skier at the bottom of the hill.
By applying conservation of energy at the top and bottom of the inclined plane we get.
Potential Energy=kinetic Energy
mgh = (1/2) mu²
u² = 2gh
u²=2(9.81)(2.9)
=56.89
u=7.54 m/s
a = - f / m
a = - μ*m*g / m
a = - μg
From equation of motion
v²- u² = 2 -μ g S
v=0 m/s
-(7.54)²=-2(0.06)(9.81)S
S=48.29 m
Answer:
Friction always acts in the direction opposing motion. This means if friction is present, it counteracts and cancels some of the force causing the motion (if the object is being accelerated).
Explanation:
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other.
A bowling ball because it is heavier and it has more air force going against it<span />
Answer:
a. mechanical; require a medium to travel through
Explanation:
Longitudinal, transverse and surface waves are types of mechanical waves. For example, within the longitudinal waves are the sound waves, which needs a medium to propagate like the air. This is why sound does not travel in a vacuum.
And an example of a transverse wave is the waves that form in the water when a rock is thrown (ripples), these waves need a medium (the water) to propagate.
On the other hand, electromagnetic waves such as light waves do not need a medium to propagate, this is why we can see the light of distant stars because their light travels through the vacuum until it reaches us.
So, the answer is:
Transverse, surface, and longitudinal waves are all mechanical waves because they require a medium to travel through .