Answer: the waves travel in an horizontal direction while the strings vibrate in a vertical direction.
If the vertical component is 29.6 m/s down, and the horizontal component
is 54.8 m/s parallel to the surface, then the magnitude of the slanty vector is
√(29.6² + 54.8²) = √(876.16 + 3003.04) = √3879.2 = 62.28 m/s .
That's 139 mph ! Wow !
Heat is something that really get hot. And transfers is when you send something to another person or another place.
Answer:
K.E = 30,000 J
Explanation:
Given,
The potential energy of the roller coaster car, P.E = 40000 J
The kinetic energy at height h/4, K.E = ?
According to the law of conservation of energy, the total energy of the system is conserved.
At height 'h', the total energy is,
P.E = mgh
K.E = 0
At height 'h/4', the total energy is
P.E + K.E = mgh
P.E = mgh/4
K.E = 1/2 mv²
Therefore,
mgh/4 + 1/2 mv² = mgh
gh/4 + v²/2 = gh
Hence,
v² = 3gh/2
Substituting in the K.E equation
K.E = 1/2 mv²
= 1/2 m (3gh/2)
= 3/4 mgh
= 3/4 x 40000
= 30000 J
Hence, the K.E of the roller coaster car is, K.E = 30000 J