It is the Jupiter from outer space. And the years from 170 light years away from the Earth.
Answer:
90m
Explanation:
Let g = 9.8 m/s2. The friction is the product of normal force and its coefficient, and normal force is equal to gravity

The acceleration caused by friction, according to Newton's 2nd law:

For the friend to slide over, then the centripetal acceleration must be equal to friction acceleration.
Since you are driving at a constant speed of 21 m/s, then your maximum radius of curvature can be calculated using the following formula:


Answer:
W = 2.74 J
Explanation:
The work done by the charge on the origin to the moving charge is equal to the difference in the potential energy of the charges.
This is the electrostatic equivalent of the work-energy theorem.

where the potential energy is defined as follows

Let's first calculate the distance 'r' for both positions.

Now, we can calculate the potential energies for both positions.

Finally, the total work done on the moving particle can be calculated.

The largest resultant amplitude would be that created by constructive interference, basically when the two waves are of the same phase, so it would be 0.36m+0.22m= 0.58 m.
Answer:
Explanation:
Let v be the velocity acquired by electron in electric field
V q = 1/2 m v²
V is potential difference applied on charge q , m is mass of charge , v is velocity acquired
2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²
v² = 844 x 10¹²
v = 29.05 x 10⁶ m /s
Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .
Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron
= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶
= 79.02 x 10⁻¹³ N .
Minimum force will be zero when electron moves along the direction of magnetic field .