Potential energy + kinetic energy = constant at every moment in time
At the highest point:
potential energy is at its maximum
kinetic energy is zero
Answer:
Explanation:
Remark
This is a second class lever. It is much more efficient than the fishing pole problem. All distances are measured from the pivot in these kinds of questions.
Givens
d1 = 1.5
d2 = ?
m1 = 50 kg
m2 = 30 kg
The lighter child will have to sit further away from the pivot to make the two conditions equal.
Formula
d1*m1 = d2*m2
1.5*50 = d2 * 30
75 = 30 * d2
75/30 = d2
d2 = 2.5
Remark
Notice that the distance is longer for the lighter child. The fact that these are masses and not forces does not matter, but you should take note of it. There is a difference between masses and forces. See the fishing pole problem.
Answer to the multiple Choice question. No motion on this kind of problem means equal moments. The answer is D
Problem 2
1) The wheels are further apart making B more stable. The wider the distance the wheels are apart, the harder it would be to tip the concrete mixer over
2) The center of gravity is lower. The higher the force is the more chance you have of exerting an external force to tip the mixer over.
The period will be the same if the amplitude of the motion is increased to 2a
What is an Amplitude?
Amplitude refers to the maximum extent of a vibration or oscillation, measured from the position of equilibrium.
Here,
mass m is attached to the spring.
mass attached = m
time period = t
We know that,
The time period for the spring is calculated with the equation:

Where k is the spring constant
Now if the amplitude is doubled, it means that the distance from the equilibrium position to the displacement is doubled.
From the equation, we can say,
Time period of the spring is independent of the amplitude.
Hence,
Increasing the amplitude does not affect the period of the mass and spring system.
Learn more about time period here:
<u>brainly.com/question/13834772</u>
#SPJ4
Answer:
Total distance = 400+700+1200= 2300km
Explanation:
the resultant of d 1st right angle triangle + 1200
= 806.2 + 1200 = 2006.2km
Answer:
mb = 3.75 kg
Explanation:
System of forces in balance
ΣFx =0
ΣFy = 0
Forces acting on the box
T₁ : Tension in string 1 ,at angle of 50° with the horizontal on the left
T₂ = 40 N : Tension in string 2, at angle of 75° with the horizontal on the right.
Wb :Weightt of the box (vertical downward)
x-y T₁ and T₂ components
T₁x= T₁cos50°
T₁y= T₁sin50°
T₂x= 30*cos75° = 7.76 N
T₂y= 30*sin75° = 28.98 N
Calculation of the Wb
ΣFx = 0
T₂x-T₁x = 0
T₂x=T₁x
7.76 = T₁cos50°
T₁ = 7.76 /cos50° = 12.07 N
ΣFy = 0
T₂y+T₁y-Wb = 0
28.98 + 12.07(cos50°) = Wb
Wb = 36.74 N
Calculation of the mb ( mass of the box)
Wb = mb* g
g: acceleration due to gravity = 9.8 m/s²
mb = Wb/g
mb = 36.74 /9.8
mb = 3.75 kg