1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
egoroff_w [7]
3 years ago
15

What should you do immediately if a boat motor catches fire?

Physics
1 answer:
olganol [36]3 years ago
5 0
 If a boat motor catches fire, you should immediately shut off the fuel supply, and try to put out the fire with an extinguisher. It is very important to have fully charged fire extinguishers on hand. As soon as you notice the fire activate the extinguisher and do not panic. In order to prevent fire remember to c<span>lean the bilges often and maintain proper gear stowage, make sure short-tie cables are properly connected...</span>
You might be interested in
What must the charge (sign and magnitude) of a 3.45 g particle be for it to remain stationary when placed in a downward-directed
Pani-rosa [81]

     charge must be equal to 5.74 ×10⁻⁵

 In the question it is said that the particle remains stationary which means the the net force on the particle is zero. So, the counterbalancing forces must be equal which means weight is equal to upward electric force.

     →    Fnet =0

     →    mg =  qE

 substituting the values we get :

         0.00345 × 9.81 =  q × 590

   →       q = 5.74 ×10⁻⁵

    Hence the charge must be equal to   5.74 ×10⁻⁵.

   Learn more about charges here:

          brainly.com/question/26092261

                    # SPJ4

8 0
1 year ago
A small truck has a mass of 2145 kg. How much work is required to decrease the speed of the vehicle from 25.0 m/s to 12.0 m/s on
MAXImum [283]

Answer:

The work required is -515,872.5 J

Explanation:

Work is defined in physics as the force that is applied to a body to move it from one point to another.

The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.

Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

Ec=\frac{1}{2} *m*v^{2}

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).

The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:

W=\frac{1}{2} *m*v2^{2}-\frac{1}{2} *m*v1^{2}

W=\frac{1}{2} *m*(v2^{2}-v1^{2})

In this case:

  • W=?
  • m= 2,145 kg
  • v2= 12 \frac{m}{s}
  • v1= 25 \frac{m}{s}

Replacing:

W=\frac{1}{2} *2145 kg*((12\frac{m}{s} )^{2}-(25\frac{m}{s} )^{2})

W= -515,872.5 J

<u><em>The work required is -515,872.5 J</em></u>

3 0
3 years ago
A person with mass mp = 76 kg stands on a spinning platform disk with a radius of R = 1.98 m and mass md = 191 kg. The disk is i
nalin [4]
<span>1.7 rad/s The key thing here is conservation of angular momentum. The system as a whole will retain the same angular momentum. The initial velocity is 1.7 rad/s. As the person walks closer to the center of the spinning disk, the speed will increase. But I'm not going to bother calculating by how much. Just remember the speed will increase. And then as the person walks back out to the rim to the same distance that the person originally started, the speed will decrease. But during the entire walk, the total angular momentum remained constant. And since the initial mass distribution matches the final mass distribution, the final angular speed will match the initial angular speed.</span>
3 0
4 years ago
The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit
vovikov84 [41]

Gravitational force is given by, F= G\frac{mM}{R^{2}}

Where, m and M are the masses of the objects, R is the distance between them and G gravitational constant.

Gravitational force of the star on planet 1, F_{1}= G\frac{m_{1}M}{R^{2}}

Gravitational force of the star on planet 2, F_{2}= G\frac{3m_{1}M}{(3R)^{2}}

Ratio, \frac{F_{1}}{F_{2}}= \frac{\frac{Gm_{1}M}{R^{2}}}{\frac{G3m_{1}M}{(3R)^{2}}}

\frac{F_{1}}{F_{2}}=  \frac{3}{1}

Therefore, the gravitational force of the star on the planet 1 is three times that on planet 2.

6 0
3 years ago
Read 2 more answers
Why does it take significantly stronger magnetic and electric field strengths to move the beam of alpha particles compared with
wlad13 [49]
It takes significantly stronger magnetic and electric field strengths to move a beam of alpha particles compared with the beam of electrons(betaparticles) because the charge of an alpha particle is twice stronger than a beta particle. Therefore, more energy is needed to move the alpha particle.
4 0
3 years ago
Other questions:
  • What is the formula for a simple sugar?
    15·2 answers
  • Using the rules for significant figures, what do you get when you multiply 67.6 by 1.2?
    14·2 answers
  • The image shows a diagram. which descriptions best fit the labels
    14·2 answers
  • The dimensions of a room are 16.40 m long, 4.5 m wide and 3.26 m high. What is the volume of the room in cubic meters? Express y
    5·1 answer
  • Which of the following takes place in the combustion chamber of a gas turbine engine?
    10·2 answers
  • Which of the following is inversely proportional to the gravitational force between two masses?
    13·1 answer
  • 29. Use the figure to determine in what direction the north magnetic pole of the compass will point. what type of magnetic pole
    6·1 answer
  • What is one common product use microwaves<br><br><br><br> dont have much timeee
    10·1 answer
  • As the building collapses, the volume of air inside the building decreases, while the mass of the air stays the same. This means
    7·1 answer
  • Describe Newton's law of gravitation and its application?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!