Answer:
a)
two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign. both charges are positive(+) or Negative (-)
b)
both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
Explanation:
Given that;
L = 0.26 m
k = 180 N/m
x = 0.039 m
a)
we know that two like charges always repel each other while two unlike charges attract each other. Since the spring stretches by 0.039 m, the charges have the same sign.
b)
Spring force F = kx
F = 180 × 0.039
F = 7.02 N
Now, Electrostatic force F = Keq²/r²
where r = L + x = ( 0.26 + 0.039 )
we know that proportionality constant in electrostatics equations Ke = 9×10⁹ kg⋅m3⋅s−2⋅C−2
so from the equation; F = Keq²/r²
Fr² = Keq²
q = √ ( Fr² / Ke )
we substitute
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ ( 7.02 N × ( 0.26 + 0.039 )² / 9×10⁹ )
q = √ (0.627595 / 9×10⁹)
q = √(6.97 × 10⁻¹¹)
q = 8.35 × 10⁻⁶ C
Therefore both q1 and q1 are 8.35 × 10⁻⁶ C or -8.35 × 10⁻⁶ C
Answer:
applied force
Explanation:
any force where you push or pull is always applied force.
Answer:
5773.50269 Hz
23 A
Explanation:
= Inductance = 6 mH
= Capacitance = 5 μF
= Resistance = 3 Ω
= Maximum emf = 69 V
Resonant angular frequency is given by

The resonant angular frequency is 5773.50269 Hz
Current is given by

The current amplitude at the resonant angular frequency is 23 A
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
Answer:
Resultant force, R = 10 N
Explanation:
It is given that,
Force acting along +x direction, 
Force acting along +y direction, 
Both the forces are acting on a point object located at the origin. Let the resultant force of the object is given by R. So,

Here 


R = 10 N
So, the resultant force on the object is 10 N. Hence, this is the required solution.