Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹
Answer:
They will meet at a distance of 7.57 m
Given:
Initial velocity of policeman in the x- direction, 
The distance between the buildings, 
The building is lower by a height, h = 2.5 m
Solution:
Now,
When the policeman jumps from a height of 2.5 m, then his initial velocity, u was 0.
Thus
From the second eqn of motion, we can write:


t = 0.707 s
Now,
When the policeman was chasing across:


The distance they will meet at:
9.57 - 2.0 = 7.57 m
Answer:
this is were you get everything
Explanation:
If something is traveling at 20 m/s constant speed AND its direction isn't changing, then its velocity is constant. Another way to say that is: Its acceleration is zero. Zero acceleration means zero NET force acting on the object, or a group of BALANCED forces acting on it, also called EQUILIBRIUM. The required answer is: YES.
If a real projectile is launched, the force of gravity acts on it vertically downward. There's no upward force acting on it to balance gravity. Therefore, the forces on the projectile are NOT balanced, there IS a net vertical force on it, and it's NOT in equilibrium. Too bad.
First let us calculate for the angle of inclination using
the sin function,
sin θ = 1 m / 4 m
θ = 14.48°
Then we calculate the work done by the movers using the
formula:
W = Fnet * d
So we must calculate for the value of Fnet first. Fnet is
force due to weight minus the frictional force.
Fnet = m g sinθ – μ m g cosθ
Fnet = 1,500 sin14.48 – 0.2 * 1,500 * cos14.48
Fnet = 84.526 N
So the work exerted is equal to:
W = 84.526 N * 4 m
<span>W = 338.10 J</span>