Answer:
Production of GMOs is a multistage process which can be summarized as follows:
1. identification of the gene interest;
2. isolation of the gene of interest;
3. amplifying the gene to produce many copies;
4. associating the gene with an appropriate promoter and poly A sequence and insertion into plasmids;
5. multiplying the plasmid in bacteria and recovering the cloned construct for injection;
6. transference of the construct into the recipient tissue, usually fertilized eggs;
7. integration of gene into recipient genome;
8. expression of gene in recipient genome; and
9. inheritance of gene through further generations.
The volume of the balloon will halve
Explanation:
Boyle's law states that for an ideal gas kept at constant temperature, the pressure of the gas is proportional to its volume. Mathematically,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

And if we apply it to the gas inside the balloon in this problem (assuming its temperature is constant), we have:
is the initial pressure at sea level (the atmospheric pressure)
is the initial volume
is the final pressure
is the final volume
Substituting into the equation, we find:

Which means that the volume of the balloon will halve.
Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
10. 36 g ZnCl2
Explanation:
Zn + 2HCl -> ZnCl2 + H2
0.076 mol Zn
1.37 mol HCl
3 mol H2
Limiting reactant: Zn
1 mol Zn -> 1 mol ZnCl2
0.076 mol Zn ->x x= 0.076 mol ZnCl2=10.36 g
Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Explanation:
acceleration is weight*gravity
tension is the weight In Newtons