Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1
The new period is D) √2 T

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy and Period of Simple Pendulum formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>


where:
<em>T = period of simple pendulum ( s )</em>
<em>L = length of pendulum ( m )</em>
<em>g = gravitational acceleration ( m/s² )</em>
Let us now tackle the problem!

<u>Given:</u>
initial length of pendulum = L₁ = L
initial mass = M₁ = M
final length of pendulum = L₂ = 2L
final mass = M₂ = 2M
initial period = T₁ = T
<u>Asked:</u>
final period = T₂ = ?
<u>Solution:</u>






<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer:
0.3384 N
Explanation:
Acceleration = 13 m/s^2
Force = 4.4 N
Force = mass * acceleration
mass = force / acceleration
mass = 4.4 / 13
mass = 0.3384 N
Answer:
q = 0.0003649123 m²/s = (3.65 × 10⁻⁴) m²/s
Explanation:
For laminar flow between two parallel horizontal plates, the volumetric flow per metre of width is given as
q = (2h³/3μ) (ΔP/L)
h = hydraulic depth = 4mm/2 = 2mm = 0.002 m
μ = viscosity of oil (SAE 30) at 15.6°C = 0.38 Pa.s
(ΔP/L) = 26 KPa/m = 26000 Pa/m
q = (2h³/3μ) (ΔP/L)
q = (26000) × (2(0.002³)/(3×0.38))
q = 0.0003649123 m²/s = (3.65 × 10⁻⁴) m²/s
Answer:
This conveyor belt should be connected to fixed pulleys in case their total effort is less than the load. But if it's not that, the belt should be connected to movable pulleys.
Explanation:
