Answer:
LCM of 18 and 20= 2
LCM of 45 and 72=9
HCM of 24 and 36=12
Step-by-step explanation:
Answer:
Median: 55
First quartile: 26.5
Third quartile: 93
Interquartile range: 66.5
Answer: a) α = 0.7927, b) at u=14.8, β = 0.99767, at u = 14.9, β= 0.2073
Step-by-step explanation: a) from the question, u= population mean = 15 and x= sample mean = 14.9
σ = population standard deviation = 0.5, n = sample size = 50.
We get the probability of committing a type 1 error by using the z score.
Z = x - u/(σ/√n)
Z = 14.9 - 15/(0.5/√50)
Z = - 0.1/0.0707
Z = - 1.41.
By checking the the probabilistic value attached to this z score using a standard normal distribution table whose area is to the left of the distribution, we have that
P(z=-1.41) = 0.7927.
Hence the probability of committing a type 1 error is 0.7927
b)
at x = 14.8 ( I let ua=x=14.8)
Z = x - u/(σ/√n)
Z = 14.8 - 15/(0.5/√50)
Z = - 0.2/ 0.0707
Z = - 2.83
Using the standard normal distribution table, we have that
P(z=-2.38) = 0.00233.
But α + β = 1
Where α= probability of committing a type 1 error
β = probability of committing a type 2 error.
β = 1 - α
β = 1 - 0.00233
β = 0.99767
At x = 14.9
Z = x - u/(σ/√n)
Z = 14.9 - 15/(0.5/√50)
Z = - 0.1/0.0707
Z = - 1.41.
P(z=-1.41) = 0.7927.
α = 0.7927.
But α + β = 1
β = 1 - 0.7927
β = 0.2073
Answer:
162 metres
Step-by-step explanation:
Since h is proportional to the square of v, we know that their ratio must be constant, so
where v1 and v2 are velocities and h1 and h2 are their respective heights.
Since we are given that v = 10 and h = 8, we can set v1 = 10 and h1 = 8 and since we are trying to find the height for v = 45, we can set v2 = 45. Inputting these values into the equation and solving, we get
10^2/8 = 45^2/h2
h2 = 45^2/(10^2/8) = 162 metres
I hope this helps!
The square footage without the door and the window is 246