You could hold any object (like an apple) for your class to see. (Its potential energy is greatest at this point). At the point when you are holding the object the potential energy will be equal to the object's mass multiplied by the object's acceleration due to gravity(9. 8 m/s²) multiplied by the height of the object(however high you choose to hold it). Release the object while it is falling, the object's motion will be evidence of the kinetic energy that the object is experiencing. As the object's kinetic energy increases, its potential energy will decrease. This can be explained by the law of conservation of energy. This law states that energy cannot be created or destroyed it can only change forms. Finally, explain to your class that mechanical energy is the sum of kinetic and potential energy.
I hope this helped. I recommend you present with an informative powerpoint in the background of your presentation while you present this if you want to do well because it will better show your teacher how much you know rather than if you were to just speak to the class during your presentation.
Metaphase; the centromeres of duplicated chromosomes line up in the middle of the cell. (It's also the shortest phase of mitosis).
Answer:
the maximum angular speed (in radians per second) of a Blu-ray disc as it rotates is 57.6 m/s
Explanation:
Given information:
diameter of the disc, d = 11 cm, r = 5.5 cm = 0.055 m
angular speed ω = 10000 rev/min = (10000 rev/min)(2π rad/rev)(1/60 min/s)
= 1000π/3 rad/s
to calculate the maximum angular speed we can use the following formula
ω = v/r
v = ωr
= (1000π/3)(0.055)
= 57.6 m/s
Answer:
The answer is below
Explanation:
Momentum is used to measure the quantity of motion in an object. Momentum is the product of mass and velocity.
Momentum = mass * velocity
The principle of conservation of momentum states that momentum cannot be created or destroyed but can be transferred. Therefore the momentum before and after an action is equal.
Initial momentum = Final momentum
Let m be the mass of the diver, M be the mass of the raft, u be the initial velocity of the diver, U be the initial velocity of the raft, v be the final velocity of the diver and V be the final velocity of the raft.
m = 71 kg, M = 500 kg, v = 6 m/s
Initial both the raft and diver are at rest, hence u and U is zero, hence:
mu + MU = mv + MV
71(0) + 500(0) = 71(6) + 500(V)
0 = 426 + 500(V)
500(V) = -426
V = -426/500
V = -0.852 m/s
Answer: spectroscopy
Spectroscopy is the separation of the light in the different wavelengths and spectrophotometry measures the intensities of the different components of the light to get the composition of substances.