Answer:
a) B = 10⁻¹ r
, b) B = 4 10⁻⁹ / r
, c) B=0
Explanation:
For this exercise let's use Ampere's law
∫ B. ds = μ₀ I
Where I is the current locked in the path. Let's take a closed path as a circle
ds = 2π dr
B 2π r = μ₀ I
B = μ₀ I / 2μ₀ r
Let's analyze several cases
a) r <Rw
Since the radius of the circumference is less than that of the wire, the current is less, let's use the concept of current density
j = I / A
For this case
j = I /π Rw² = I’/π r²
I’= I r² / Rw²
The magnetic field is
B = (μ₀/ 2π) r²/Rw² 1 / r
B = (μ₀ / 2π) r / Rw²
calculate
B = 4π 10⁻⁷ /2π r / 0.002²
B = 10⁻¹ r
b) in field between Rw <r <Rs
In this case the current enclosed in the total current
I = 0.02 A
B = μ₀/ 2π I / r
B = 4π 10⁻⁷ / 2π 0.02 / r
B = 4 10⁻⁹ / r
c) the field outside the coaxial Rs <r
In this case the waxed current is zero, so
B = 0
Answer:
10 hours
Explanation:
If the plane flies at 500 miles per hour, it flies 500 miles every hour. So, to find out how many hours it will take to fly 5000, you simply do 5000/500.
The number of waves arriving at the same place in a fixed amount
of time is directly related to the frequency of the waves.
The answer is a
the equation needs to be balanced. There are fewer oxygen atoms in the equation than hydrogen or a carbon
The speed of the runner is 300 m /38 seconds. You can simplify this answer to be about 7.9 m/s