-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
Answer:
The length of rod A will be <u>greater than </u>the length of rod B
Explanation:
We, know that the formula for final length in linear thermal expansion of a rod is:
L' = L(1 + ∝ΔT)
where,
L' = Final Length
L = Initial Length
∝ = Co-efficient of linear expansion
ΔT = Change in temperature
Since, the rods here have same original length and the temperature difference is same as well. Therefore, the final length will only depend upon the coefficient of linear expansion.
For Rod A:
∝₁ = 12 x 10⁻⁶ °C⁻¹
For Rod B:
∝₂ = β₂/3
where,
β₂ = Coefficient of volumetric expansion for rod B = 24 x 10⁻⁶ °C⁻¹
Therefore,
∝₂ = 24 x 10⁻⁶ °C⁻¹/3
∝₂ = 8 x 10⁻⁶ °C⁻¹
Since,
∝₁ > ∝₂
Therefore,
L₁ > L₂
So, the length of rod A will be <u>greater than </u>the length of rod B
If it is s-t graph , point is c
if it is v-t graph , point is e
Answer:
Step 1: List you assets
Step 2: List your liabilities
Step 3: Subtract your liabilities from your
assets
Step 4: Total your assets
Step 5: Total your liabilities
Answer:
lThe effect of the attraction of the earth on a bigger stone can be observed more than the effect of attraction of the earth on a smaller one. hence it is difficult to lift a large stone than the smaller one on the earth surface.