Answer: Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
Explanation: In the 1600s, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
See the graph in attachment
Explanation:
In this problem we have to draw a velocity-time graph for an object travelling initially at -3 m/s, then slowing down and turning around.
In the graph, we see that the initial velocity at time t = 0 is

and it is negative, so below the x-axis.
Later, the object slows down: this means that the magnitude of its velocity increases, therefore (since the velocity is negative) the curve must go upward, approaching and reaching the x-axis (which corresponds to zero velocity).
After that, the object's velocity keep increasing, but now it is positive: this means that the object is travelling in a direction opposite to the initial direction, so it has turned around.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
Approximately
.
Explanation:
The formula for the kinetic energy
of an object is:
,
where
is the mass of that object, and
is the speed of that object.
Important: Joule (
) is the standard unit for energy. The formula for
requires two inputs: mass and speed. The standard unit of mass is
while the standard unit for speed is
. If both inputs are in standard units, then the output (kinetic energy) will also be in the standard unit (that is: joules,
Convert the unit of the arrow's mass to standard unit:
.
Initial
of this arrow:
.
That's the same as the energy output of this bow. Hence, the efficiency of energy transfer will be:
.
Answer:
you will be my girl my my girl myyyyy girllll you will be my girl my girl myyyy worldddddd you will be my. smokin ciggarets on teh roof you look so pretty and i love this view we fell inlove in october and thats why i love fall
Explanation: