I think the answer is D no change. Though you add more CO2, but the pressure is not mentioned. If the pressure is constant and the reaction is already balanced, the H2O is also saturation and can not absorb more CO2.
Answer:
mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Explanation:
The partition coefficient of X between ethoxy ethane (ether) and water, K is given by the formula
K = concentration of X in ether/concentration of X in water
Partition coefficient, K(X) between ethoxy ethane and water = 40
Concentration of X in ether = mass(g)/volume(dm³)
Mass of X in ether = m g
Volume of ether = 50/1000 dm³ = 0.05 dm³
Concentration of X in ether = (m/0.05) g/dm³
Concentration of X in water = mass(g)/volume(dm³)
Mass of X in water left after extraction with ether = (5 - m) g
Volume of water = 1 dm³
Concentration of X in water = (5 - m/1) g/dm³
Using K = concentration of X in ether/concentration of X in water;
40 = (m/0.05)/(5 - m)
(m/0.05) = 40 × (5 - m)
(m/0.05) = 200 - 40m
m = 0.05 × (200 - 40m)
m = 10 - 2m
3m = 10
m = 10/3
m = 3.33 g of X
Therefore, mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Answer:
no no no who are these some look good but are black what is this
Answer:
The answer to your question is 330 g of CHO
Explanation:
Data
Calories needed = 2200 kcal/day
CHO = 60%
Proteins = 15%
Fats = 25%
Grams of carbohydrates needed = ?
Process
1.- Calculate the number of calories in 60% of 2200 kcal
2200 kcal ---------------- 100%
x --------------- 60%
x = (60 x 2200) / 100
x = 1320 kcal
2.- Calculate the grams of CHO
1 g of CHO ---------------- 4 kcal
x ---------------- 1320 kcal
x = (1320 x 1) / 4
x = 1320/4
x = 330 g of CHO
Answer:
The strong forces oppose the electromagnetic force of repulsion between protons. Like ”glue” the strong force keeps the protons together to form the nucleus. The strong forces and electromagnetic forces both hold the atom together.
Explanation:
Hope This helps