Answer:
milk, lemon juice, toothpaste and baking soda
Answer:
2C8H18(l) + O2(g)--->CO2(g)+H2O
1) Balanced equation
C3H8 + 5O2 -> 3 CO2 + 4 H2O
2) 0.700 L C3H8
Given the pressure and temperature do not change, the molar ratio is equivalent to volume ratio
1molC3H8 / 5 mol O2 => 1 L C3H8 / 5 L O2
0.700 L C3H8 / x L O2 = 1 L C3H8 / 5 L O2 => x = 0.700 L C3H8 * 5 L O2 / 1 L C3H8
x = 3.500 L O2
3) CO2 produced
1 L C3H8 / 3 L CO2 = 0.700 L C3H8 / x L CO2 =>
x = 0.700 L C3H8 * 3 L CO2 / 1 L C3H8 = 2.100 L CO2
4) Water vapor produced
1) 1 L C3H8 / 4 L H2O = 0.700 LC3H8 / x L H2O =>
x = 0.700 L C3H8 * 4 L H20 / 1 L C3H8 = 2.800 L H2O
Ag - 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d⁹
Answer:
See explanation
Explanation:
According to Hund's rule, electrons must occur singly first before pairing takes place.
If I want to fill six electrons into orbitals, the filling of electrons will be as follows;
1s2 2s2 2p2.
The first four electrons are filled into the 1s and 2s levels having only one orbital each. The fifth and sixth electrons are filled into 2p orbitals. The 2p level have three degenerate orbitals. The two electrons are singly filled into each of the degenerate orbitals in accordance to Hund's rule.