The person that is correct based on the 2 statements from Tech A and Tech B is; Tech B
A mass flow sensor is defined as a sensor that is used to measure the mass flow rate of air entering a fuel-injected internal combustion engine and then sends a voltage that represents the airflow to the electronic control circuit.
However, for Tech A is incorrect and so the correct answer is that Tech B is right because his statement corresponds with the definition of mass flow sensor.
Read more about fuel injection engines at; brainly.com/question/4561445
Answer:
Multiplying impulse response by t ( option D )
Explanation:
We can obtain The impulse response of strength 1 considering a unit step response by Multiplying impulse response by t .
When we consider the Laplace Domain, and the relationship between unit step and impulse, we can deduce that the Impulse response will take the inverse Laplace transform of the function ( transfer ) . Hence Multiplying impulse response by t will be used .
Answer:
Explanation:
In order to keep your car running at its best, it’s important to keep up with routine maintenance and inspections. By properly maintaining your vehicle, you’ll reduce future repair costs, optimize your car’s performance, maintain its value and extend its life. Here are some regular maintenance needs to keep in mind for your vehicle:
<em>Logs.</em>
<em>Like data logs. Sometimes people make these logs to keep tabs on other people or to get important information put down somewhere that way it is saved and can be looked back upon later. Anytime someone makes an action on the computer, it makes a TMP file representing a log of what you want it to do before the computer quickly get's rid of the file.</em>
<em>-Ɽ3₮Ɽ0 Ⱬ3Ɽ0</em>
<em />
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft