Answer:
i)ω=3600 rad/s
ii)V=7059.44 m/s
iii)F=1245.8 N
Explanation:
i)
We know that angular speed given as

We know that for one revolution
θ=2π
Given that time t= 2 hr
So
ω=θ/t
ω=2π/2 = π rad/hr
ω=3600 rad/s
ii)
Average speed V

Where M is the mass of earth.
R is the distance
G is the constant.
Now by putting the values


V=7059.44 m/s
iii)
We know that centripetal fore given as

Here given that m= 200 kg
R= 8000 km
so now by putting the values


F=1245.8 N
Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Measure the longest circuit and add 50% for fittings and terminal units.
R = distance
dr/dt speed or with a direction, velocity
d(dr/dt)/dt = the time derivative of the velocity is called acceleration.
Speed is a scalar. Acceleration is a vector.
Answer:
to power devices appliances and some methods of transportation
Explanation: