Answer:
Explanation:
Given that:
V = 12.5m/s
L= 2.70m
b= 0.65m


P = 1atm
Film temperature

dynamic viscosity =

density = 0.9946kg/m³
Pr = 0.708564
K= 229.7984 * 10⁻³w/mk
Reynolds number,


we have,

we have,
heat transfer rate from top plate

Answer:
it increases the life of a frame lock
Explanation:
because it decreases wear on the lock face
Answer:
The stress level at which fracture will occur for a critical internal crack length of 6.2mm is 135.78MPa
Explanation:
Given data;
Let,
critical stress required for initiating crack propagation Cc = 112MPa
plain strain fracture toughness = 27.0MPa
surface length of the crack = a
dimensionless parameter = Y.
Half length of the internal crack, a = length of surface crack/2 = 8.8/2 = 4.4mm = 4.4*10-³m
Also for 6.2mm length of surface crack;
Half length of the internal crack = length of surface crack/2 = 6.2/2 = 3.1mm = 3.1*10-³m
The dimensionless parameter
Cc = Kic/(Y*√pia*a)
Y = Kic/(Cc*√pia*a)
Y = 27/(112*√pia*4.4*10-³)
Y = 2.05
Now,
Cc = Kic/(Y*√pia*a)
Cc = 27/(2.05*√pia*3.1*10-³)
Cc = 135.78MPa
The stress level at which fracture will occur for a critical internal crack length of 6.2mm is 135.78MPa
For more understanding, I have provided an attachment to the solution.
Answer:
While resistance welding you should wear clear grinding glasses, unbreakable plastic face shields or clear unbreakable plastic goggles. When resistance welding a #10, or more, shade lens should be worn. All hand and portable tools should be inspected for loose parts, cleanliness, or worn power cords.
Answer:
The channel distance affected by the weir
Yn ( Normal depth ) = 5.71 ft
Yc ( critical depth ) = 4.11 ft
x = 22794 ft
Explanation:
Attached below is a detailed solution to the problem
The channel distance affected by the weir
Yn ( Normal depth ) = 5.71 ft
Yc ( critical depth ) = 4.11 ft
x = 22794 ft