Voltage=Energy/Charge, V=E/Q
V in volts V, E in joules J, Q in coulombs C.
or
Voltage= Current×Resistance, V=IR
V in volts V, I in amperes A and R in ohms Ω
Answer:
P =18760.5 Pa
Explanation:
Given that
Volume ,V= 0.0434 m³
Mass ,m= 4.19 g = 0.00419 kg
T= 417 K
If we assume that water vapor is behaving like a ideal gas ,then we can use ideal gas equation
Ideal gas equation P V = m R T
p=Pressure ,V = Volume ,m =mass
T=Temperature ,R=Universal gas constant
Now by putting the values
P V = m R T
For water R= 0.466 KJ/kgK
P x 0.0434 = 0.00419 x 0.466 x 417
P =18.7605 KPa
P =18760.5 Pa
Therefore the answer is 18760.5 Pa
given that initial speed of the car is

now after travelling the distance d = 1.8 * 10^1 m the car will stop
so here we can use kinematics to find the acceleration of car


here we have


net force applied due to brakes of car is given by Newton's II law

here we have
mass = 1.2 * 10^3 kg


now we can say



So the force applied due to brakes is given as above
Answer:
+1 ion
Explanation:
Alkali metals are metals that are found in Group I of the periodic table. Their electronic configuration is such that their valence shell in grounds state is always holding only one electron which they always lose when reacting with non-metals. A loss in an electron makes the atom electrically imbalanced and hence becoming a +1 ion.
Answer: The canyon wall is 850 m away from the person
Explanation:
Well, the speed of sound
in air at
is defined as
, this can be calculated by the following equation:
(1)
Where:
is the Heat capacity ratio for air
is the Universal Gas constant
is the temperature in Kelvin
is the air molar mass

(2)
Now that we know the speed of sound, we can use the following equation to find the distance between the person and the canyon wall:
(3)
Where:
is the distance between the person and the canyon wall
is the time it takes to the sound wave to travel from the person and then go back
Isolating
:
(4)
(5)
Finally: