Heat rises, and it is warmer at the equator, so I think warm air would rise at the equator and move towards the cooler poles.
C.
Newton’s Second Law is F=ma (force is equal to the mass multiplied by acceleration), however, the equation can be rearranged to isolate and calculate mass from force over acceleration. Therefore, m=F/a
A small 20-kg canoe is floating downriver at a speed of 2 m/s. 40 J is the canoe’s kinetic energy.
Answer: Option A
<u>Explanation:</u>
The given canoe has the mass and is being given to move at a speed. Therefore the kinetic energy of the canoe can be calculated using the following method,
Given that mass of the canoe = 20 kg and its speed =1 m/s
As we know that the Kinetic energy has the formula,

Therefore, substituting the value into the equation, we get,
= 40 J
Answer: 9.9%
Explanation: efficiency = (work output /work input) × 100
Note that, 1 kilocalorie = 4184 joules, hence 22kcal = 22× 4184 = 92048 joules.
Work output = 9200 j and work input = 92048 j
Efficiency = (9200/92048) × 100 = 0.099 × 100 = 9.9%
Answer:
A sample of 5.2 mg decays to .65 mg or to 1/8 of its original amount.
1/8 = 1/2 * 1/2 * 1/2 or 3 half-lives.
3 * 30.07 = 90 yrs for 5.2 mg to decay to .65 mg
You can get these other numbers similarly:
5.2 / .0102 = 510 requires about 9 half-lives which is 30 * 9 = 270 yrs