I would use miles
Because miles will give you less of an answer
I am attaching the rest of your question so it makes sense,
<span>
Since lasers are made from stacking light waves that add together into a larger wave due to CONSTRUCTIVE INTERFERENCE.
</span>
Then, <span>light waves have that constructive interference (from question #1) because they are emitted IN PHASE with each other.
This means that they arrive at the same point of space with the same characteristics and their effects do not cancel each other, but the opposite, their intensity increases.</span>
Forces are exerted I believe : all of the above
The action force might be Tyler throwing the ball
I don't know the last one
The answer is: Heat can<span> be </span>transmitted<span> though </span>empty space<span> by thermal radiation. Thermal radiation (often called infrared radiation) is a type electromagnetic radiation (or light). Radiation is a form of energy transport consisting of electromagnetic waves traveling at the speed of light.</span>
Answer:
+5.7 m/s
Explanation:
According to the law of conservation of momentum is that the momentum before the collision is equal to the momentum after the collision. In an equation form it would look like this:
M₁V₁+M₂V₂ = M₁V₁'+M₂V₂'
Where:
M₁ = mass of object 1 (kg)
V₁ = velocity of object 1 before the collision (m/s)
V₁' = Final velocity of object 1 after the collision (m/s)
M₂ = mass of object 2 (kg)
V₂ = velocity of object 2 before the collision (m/s)
V₂' = Final velocity of object 2 after the collision (m/s)
According to your problem you have the following given:
M₁ = 5 g = 0.005kg
V₁ = 3 m/s
V₁' = -5m/s (It bounced off so it is going the other direction)
M₂ = 6g = 0.006kg
V₂ = -1 m/s (It is coming from the opposite direction of the 3-ball)
V₂' = ?
So we plug in what we know and solve for what we don't know.
