I would have to say it would be the closest to a gas A.
Comets are usually formed of ice and other suave debris, while asteroids typically contain metals.
Answer:
There is a production of 11.6 moles of CO₂
Explanation:
The reaction is this:
2C₂H₆(g) + 7O₂(g) ⟶ 4CO₂(g) + 6H₂O(g)
2 moles of ethane reacts with 7 moles of oxygen, to make 4 mol of dioxide and 6 moles of water vapor.
If the oxygen is in excess, we make the calculate with the ethane (limiting reactant)
2 moles of ethane produce 4 moles of dioxide
5.8 moles of ethane produce (5.8 .4)/2 = 11.6 moles
To do this problem, we must first look at the balanced chemical equation for the decomposition of potassium chlorate:
<span>2KClO3 --> 2KCl + 3O2 </span>
<span>We can take the given amount of grams, and use the molar mass of KClO3 to convert to moles. Then, we can use the stoichiometric ratios to relate moles of KClO3 to moles of O2. </span>
<span>(39.09)+(35.45)+(3*15.99)= 122.51 g/ mol = molar mass of KClO3 </span>
<span>45.8 g KClO3/ 122.51 g/ mol KClO3 = .374 moles KClO3 </span>
<span>.374 mol KClO3 *(3 moles O2/2 mol KClO3)= .560 moles O2 </span>
<span>Once we have moles of O2, we can convert to grams of O2. </span>
<span>(2*15.99)= 31.98 g/mol = molar mass of O2 </span>
<span>(.560 moles O2) (31.98 g/mol)= 17.91 g O2 </span>
<span>Hope this helps :)</span>
Explanation:
When designing and conducting a scientific experiment then it is necessary to sequentially follows all the steps necessary for the experiment.
Also, it is required to identify independent variables, if any. On the other hand, it is required to address any confounding variables, so that it becomes mentioned the type or number of variables present.
Thus, we can conclude that when designing and conducting a scientific experiment:
- Identify the independent variable.
- Address any confounding variables.