Force on the particle is defined as the application of the force field of one particle on another particle. the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
<h3>What is electric force?</h3>
Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.
The electric force in the second case will be the same as in the first case. Therefore the force on the particle will be the same.



Hence the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
To learn more about the electric force refer to the link;
brainly.com/question/1076352
The auditory nerve carries an electrical signal to the brain, which turns it into a sound that we recognize and understand.
Then the tangent of angle-Θ is (Ay / Ax).
Answer:
Violet has a higher frequency (approximately 7.5×1014 Hz 7.5 × 10 14 Hz ) than red light (approximately 4.3×1014 Hz 4.3 × 10 14 Hz ). Since the speed of both waves is the same, we infer that violet has a shorter wavelength (400 nm ) than red (700 nm ).
Explanation:
hope it helps this took a lot of my time please mark brainlets!