<h3><u>Answer;</u></h3>
3p34s23d7
<h3><u>Explanation</u>;</h3>
- Electrons in an atom are contained in specific energy levels that are different distances from the nucleus.
- Within each energy level is a volume of space where specific electrons are likely to be located, called orbitals. Orbitals are of different shapes, denoted by a letter (s, p, d, f, g).
- S-orbital takes a maximum of two electrons, p-orbital take a maximum of six electrons, d-orbital takes a maximum of 10 electrons, and so fourth.
- The electron filling pattern takes; 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p.........
- Therefore; in this case after 3p3, we then go to 4s, with 2 electrons, then 3d which takes 7 electrons.
Protons: 7
electrons: 7
neutrons: 7
Explanation:
1.
Given parameters:
Frequency of the radiation = 8.4 x 10¹⁴Hz
Unknown:
Energy of the wave = ?
Solution:
The energy of a wave is given by the expression below;
E = hf
E is the energy
h is the Planck's constant = 6.63 x 10⁻³⁴m²kg/s
f is the frequency
Now insert the parameters and solve;
E = 6.63 x 10⁻³⁴m²kg/s x 8.4 x 10¹⁴Hz
E = 5.57 x 10¹ x 10⁻²⁰J
E = 5.57 x 10⁻¹⁹J
2.
Given parameters:
Wavelength = 2.13 x 10⁻¹³m
Unknown:
Frequency of the wave = ?
Solution:
The frequency of a wave can be determined using the expression;
C = f∧
C is the speed of light = 3 x 10⁸m/s
f is the frequency
∧ is the wavelength
f =
=
= 1.41 x 10²¹hz
B. Gain information about the current state of the environment and ways to improve it.