The number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
<h3>How to calculate number of moles?</h3>
The number of moles in the formula units of a substance is calculated by dividing the formula unit by Avogadro's number.
According to this question, 3.20 x 10² formula units are in calcium iodide. The number of moles is as follows:
no of moles = 3.20 x 10²² ÷ 6.02 × 10²³
no of moles = 0.53 × 10-¹
no of moles = 0.053 moles
Therefore, the number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
Learn more about number of moles at: brainly.com/question/12513822
#SPJ6
Answer: Option B
Explanation: when strong acid react with strong base, the resulting solution is neutral as in the case of HCl and NaOH
HCl + NaOH —> NaCl + H2O
From the equation obtained, The salt ( NaCl) obtained is a normal salt which is neutral.
This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more:
The balanced chemical equation is,
2Mg+2HCl→2MgCl+H2↑