Answer:

Step-by-step explanation:
Given that:
![\int \int _R 4xye^{x^2 \ y} \ dA, R = [0,1]\times [0,7]](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%204xye%5E%7Bx%5E2%20%5C%20y%7D%20%5C%20dA%2C%20R%20%3D%20%5B0%2C1%5D%5Ctimes%20%5B0%2C7%5D)
The rectangle R = [0,1] × [0,7]
R = { (x,y): x ∈ [0,1] and y ∈ [0,7] }
R = { (x,y): 0 ≤ x ≤ 1 and 0 ≤ x ≤ 7 }




![\int \int _R \ 4xy e^{x^2 \ y} \ dA = \dfrac{4}{2}[e^y -1]^7_0 \ dy](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%20%5C%204xy%20e%5E%7Bx%5E2%20%5C%20y%7D%20%20%5C%20dA%20%3D%20%20%5Cdfrac%7B4%7D%7B2%7D%5Be%5Ey%20-1%5D%5E7_0%20%5C%20dy)
![\int \int _R \ 4xy e^{x^2 \ y} \ dA = 2 [(e^7 -7)-(e^0 -0)]](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%20%5C%204xy%20e%5E%7Bx%5E2%20%5C%20y%7D%20%20%5C%20dA%20%3D%20%202%20%5B%28e%5E7%20-7%29-%28e%5E0%20-0%29%5D)
![\int \int _R \ 4xy e^{x^2 \ y} \ dA = 2 [(e^7 -7)-1]](https://tex.z-dn.net/?f=%5Cint%20%5Cint%20_R%20%5C%204xy%20e%5E%7Bx%5E2%20%5C%20y%7D%20%20%5C%20dA%20%3D%20%202%20%5B%28e%5E7%20-7%29-1%5D)

Answer:
it is a 55% decrease
(why do i have to type at least twenty characters, just send the answer omg)
Answer:
cx +cy = a² + b²
Step-by-step explanation:
In the end, he wants to show that c² = a²+b², so he will want to form the sum a²+b². That sum can be formed by adding the expressions for a² and b² just found:
cx +cy = a² + b² . . . . . . . Todd's next step
__
Then the following steps are ...
c(x+y) = a² + b²
c² = a² + b²
X= the total questions
x×20%=16. 20%=0.2
so x×0.2=16
solve for x and that is your answer; )
Answer:
c
Step-by-step explanation:
because it is a outlier we can assume these 2 things:
it influences the mean and median, with the mean being effected more
because we know this, we can now solve the problem
both the median and mean decreased, but the mean decreased more than the median